
Discrete Optimization 10 (2013) 263–295

Contents lists available at ScienceDirect

Discrete Optimization

journal homepage: www.elsevier.com/locate/disopt

A computational comparison of flow formulations for the
capacitated location-routing problem
Claudio Contardo a,e,∗, Jean-François Cordeau b,d, Bernard Gendron c,d

a Département de management et technologie, ESG UQÀM, 315 Ste-Catherine est, Montréal, Canada H2X 3X2
b Canada Research Chair in Logistics and Transportation, HEC Montréal, 3000 chemin de la Côte-Sainte-Catherine, Montréal, Canada
H3T 2A7
c Département d’informatique et de recherche opérationnelle, Université de Montréal, C.P. 6128, succ. Centre-ville, Montréal, Canada
H3C 3J7
d Centre interuniversitaire de recherche sur les réseaux d’entreprise, la logistique et le transport (CIRRELT), C.P. 6128, succ. Centre-ville,
Montréal, Canada H3C 3J7
e Groupe d’études et de recherche en analyse des décisions (GERAD), 3000 chemin de la Côte-Ste-Catherine, Montréal, Canada H3T 2A7

a r t i c l e i n f o

Article history:
Received 20 July 2011
Received in revised form 5 September 2012
Accepted 20 July 2013
Available online 8 August 2013

MSC:
90C27
90C57

Keywords:
Location-routing
Flow formulations
Branch-and-cut

a b s t r a c t

In this paperwepresent a computational comparison of four different flow formulations for
the capacitated location-routing problem. We introduce three new flow formulations for
the problem, namely a two-index two-commodity flow formulation, a three-index vehicle-
flow formulation and a three-index two-commodity flow formulation.We also consider an
existing two-index vehicle-flow formulation and extend it by considering new families of
valid inequalities and separation algorithms.We introduce newbranch-and-cut algorithms
for each of the formulations and compare them on a wide number of instances. Our results
show that compact formulations can produce tight gaps and solve many instances quickly,
whereas three-index formulations scale better in terms of computing time.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In the Capacitated Location-Routing Problem (CLRP) we are given a set I of potential facility locations and a set J of
customers. The problem consists in selecting a subset of facilities and in designing vehicle routes around these facilities
so that every customer is visited exactly once. Each facility i ∈ I has a capacity bi and a fixed cost fi. The fleet is unlimited
and each vehicle has a capacity Q . Each customer j ∈ J has a demand dj. We define an undirected graph G = (V , E) where
V = I ∪ J is the vertex set and E is the edge set. With every edge {i, j} ∈ E is associated a routing cost cij for using the
edge. The routing costs cij are assumed to satisfy the triangle inequality. Each route must start from and return to the same
selected facility, and the sum of the demands of the customers served along a route cannot exceed Q . In addition, the total
demand of the customers served in routes from facility i cannot exceed bi. The objective consists in minimizing the sum of
the routing costs and the fixed costs associated with the selected facilities.

A three-index mixed-integer programming formulation for the CLRP was introduced by Perl and Daskin [1] for the
general case of an asymmetric network, heterogeneous vehicles and heterogeneous facilities. Its linear programming (LP)

∗ Corresponding author at: Département de management et technologie, ESG UQÀM, 315 Ste-Catherine est, Montréal, Canada H2X 3X2. Tel.: +1 514 343
7575; fax: +1 514 343 7121.

E-mail addresses: claudio.contardo@cirrelt.ca, ccontard@gmail.com (C. Contardo), jean-francois.cordeau@cirrelt.ca (J.-F. Cordeau),
bernard.gendron@cirrelt.ca (B. Gendron).

1572-5286/$ – see front matter© 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.disopt.2013.07.005

http://dx.doi.org/10.1016/j.disopt.2013.07.005
http://www.elsevier.com/locate/disopt
http://www.elsevier.com/locate/disopt
http://crossmark.crossref.org/dialog/?doi=10.1016/j.disopt.2013.07.005&domain=pdf
mailto:claudio.contardo@cirrelt.ca
mailto:ccontard@gmail.com
mailto:jean-francois.cordeau@cirrelt.ca
mailto:bernard.gendron@cirrelt.ca
http://dx.doi.org/10.1016/j.disopt.2013.07.005

264 C. Contardo et al. / Discrete Optimization 10 (2013) 263–295

relaxation does not, however, provide lower bounds that are tight enough to be used within a branch-and-cut algorithm.
Laporte et al. [2] proposed the first two-index vehicle-flow formulation for the LRP with uncapacitated facilities (ULRP).
They have considered vehicle capacity cuts (CC) as well as chain barring constraints (CBC) and, by means of a branch-and-
bound algorithm, were able to solve small size instances. Based on this work, Belenguer et al. [3] recently proposed a two-
index integer programming formulation for the CLRP, providing strengthened versions of the CC and the CBC. They also
introduced a new version of the facility capacity inequalities (FCI) and other constraints such as co-circuit constraints and
depot degree constraints. The lower bounds obtained by their algorithm are very tight and suggest that by improving the
separation algorithms as well as developing new families of valid inequalities, the cutting-plane approach would lead to a
successful methodology for solving medium or even large size instances of the CLRP. Akca et al. [4] have introduced amixed
set partitioning/knapsack formulation obtained from a Dantzig–Wolfe decomposition of the three-index formulation that
is solved by means of a branch-and-price method. The pricing problem consists in finding elementary paths of minimum
reduced cost under capacity constraints. The lower bounds obtained by their algorithm show a significant improvement
with respect to those obtained by the algorithms based on the two-index vehicle-flow formulation. More recently, Baldacci
et al. [5] have proposed a branch-and-cut-and-price algorithm. They apply two bounding procedures to compute a tight
lower bound, followed by the optimal solution of a small number of multiple depot vehicle routing problems (MDVRP).
They provide a strengthened version of the CC aswell as clique inequalities for the set-partitioning problem. Their algorithm
improves the lower bounds of the previous approaches and solves to optimality instances with up to 199 customers and 14
facilities.

The CLRP is known to be NP-hard, as it combines (and includes as particular cases) both the Capacitated Vehicle Routing
Problem (CVRP) and the Capacitated Facility Location Problem (CFLP). Authors have thus focused their attention on the
development of heuristic methods to find good quality solutions in reasonable computing times. Most of these heuristics
are based on decomposition techniques that solve location and routing subproblems. Depending on whether the algorithm
iterates between the two subproblems, we distinguish between sequential algorithms [1] and iterative algorithms [6–9].
Tuzun and Burke [10] decompose the problem into location and routing subproblems, but the location decisions at each
iteration only consider the opening of new facilities or the swapping of two already open facilities, so the whole algorithm
rapidly converges to a local optimum. Other heuristics include memetic algorithms [11] and Lagrangian heuristics [12].

The main contributions of this paper can be summarized as follows:

(i) We introduce three new formulations based on vehicle flows and commodity flows, which are proven to dominate, in
terms of the LP relaxation lower bound, the two-index vehicle-flow formulation of Belenguer et al. [3] at the expense
of adding more variables.

(ii) We derive two new families of multistar inequalities from the commodity-flow formulations and introduce separation
algorithms for using them with the vehicle-flow formulations.

(iii) We introduce several new families of valid inequalities for the formulations introduced in this paper, and strengthen
several of the existing ones.

(iv) We introduce new, efficient separation algorithms for the inequalities used in our algorithms, which in many cases
generalize those introduced by Belenguer et al. [3].

(v) We perform a computational study comparing each of the formulations on a large number of instances and discuss
their advantages and disadvantages.

The rest of the paper is organized as follows. In Section 2 we first describe the two-index formulation introduced by
Belenguer et al. [3]. We then introduce the three new formulations based on vehicle flows and commodity flows. We prove
that for the case of the commodity-flow formulations, some new classes of multistar inequalities are implied. We illustrate
by means of an example the strength of each of the formulations as well as the different classes of multistar inequalities
introduced. In Section 3 we present both existing and new families of valid inequalities for the CLRP. In Section 4 we begin
by introducing a general heuristic for generating cuts, and we then introduce the separation algorithms for each of the valid
inequalities introduced in the paper. In Section 5 we describe the branch-and-cut algorithms used in our experiments by
specifying the separation and branching strategies. In Section 6 we present a computational study performed after running
our algorithms on several families of instances. This is followed by the conclusions in Section 7. To improve clarity, we
provide in the Appendix the proofs of the lemmas and propositions introduced in Sections 2–4.

2. Mathematical formulations

In this section we first describe the two-index formulation introduced by Belenguer et al. [3] for the CLRP with a ho-
mogeneous fleet and symmetric routing costs. In their modeling framework, facilities can be heterogeneous and thus have
different capacities and fixed costs. We then introduce three new formulations based on vehicle flows and two-commodity
flows. We end this section with an example that illustrates the potential strength of the formulations.

2.1. A two-index vehicle-flow formulation

In this section we present the two-index vehicle-flow formulation introduced by Belenguer et al. [3]. We first describe
the notation that wewill use throughout the article and then present the formulation itself. Let G = (V , E) be an undirected

C. Contardo et al. / Discrete Optimization 10 (2013) 263–295 265

graph,where V = I∪J and E = {{u, v} : u, v ∈ V }\I×I . For every subsetU ⊆ V , we define E(U) = {{u, w} ∈ E : u, w ∈ U},
and δ(U) = {{u, w} ∈ E : u ∈ U, w ∉ U}. For every pair of disjoint subsets U and W , let also (U : W) = {{u, w} ∈ E :

u ∈ U, w ∈ W }. With every edge e ∈ δ(I) are associated two binary variables: xe equal to 1 iff edge e is used once, and ye
equal to 1 iff edge e is used twice. With every edge e ∈ E(J) is associated a binary variable xe equal to 1 iff edge e is used.
For every facility i ∈ I , let zi be a binary variable equal to 1 iff facility i is selected. For a given edge set F ⊆ E we define
x(F) =

e∈F xe and y(F) =

e∈F ye (if F ⊆ δ(I)). For a given subset S ⊆ J of customers, we define d(S) =

j∈S dj, and a

constant r(S) = ⌈d(S)/Q ⌉ which is a lower bound on the number of vehicles required to satisfy the demand of customers
in S. Finally, we define S = J \ S. The CLRP can then be formulated as the following integer program.

min

i∈I

fizi +

e∈E

cexe + 2

e∈δ(I)

ceye (VF2)

subject to

x(δ(j)) + 2y(I : {j}) = 2 j ∈ J (1)
x(δ(S)) + 2y(I : S) ≥ 2r(S) S ⊆ J, |S| ≥ 2 (2)
xij + yij ≤ zi i ∈ I, j ∈ J (3)

x(I : {j}) + y(I : {j}) ≤ 1 j ∈ J (4)

x((I \ {i}) ∪ S : S) + 2y(I \ {i} : S) ≥ 2 i ∈ I, S ⊆ J, d(S) > bi (5)

x(δ(S)) ≥ 2(x({h} : I ′) + x({j} : I \ I ′)) S ⊆ J, |S| ≥ 2, h, j ∈ S, I ′ ⊂ I (6)
zi ∈ {0, 1} i ∈ I (7)
xe ∈ {0, 1} e ∈ E (8)
ye ∈ {0, 1} e ∈ δ(I). (9)

Demand constraints (1) impose that every customer vertex be visited once and also act as flow conservation equations.
Constraints (2) are the capacity cuts (CC) which play a dual role: they forbid tours disconnected from facilities as well
as tours serving a demand larger than Q . Constraints (3) ensure that there is no outgoing flow from unselected facilities.
Constraints (4) forbid single-customer routes to be linked to two different facilities. Constraints (5) are the facility capacity
inequalities (FCI). They forbid the existence of a set of routes leaving from a given facility i and serving a demand higher
than bi. Constraints (6) are the path constraints (PC) that prevent the route of a vehicle from joining two different facilities.
These constraints are not valid when |S| = 1 and they are thus complementary to constraints (4).

Unlike in traditional CVRP formulations, two sets of variables (x and y) are associated with the edges in δ(I). One can in
fact verify that if these variables are replaced with the aggregated variables xe = xe + 2ye, single-customer routes linked to
two different facilities can no longer be correctly eliminated as we do with constraints (4).

2.2. A three-index vehicle-flow formulation

Due to their large number of variables, three-index formulations for vehicle routing problemshave limited practical inter-
est. In these formulations, two indices represent a certain edge while the third index indicates which vehicle uses this edge.
These formulations naturally provide tighter bounds than their two-index counterpartswhen augmented by all of the known
valid inequalities. However, they also present a lot of symmetry that makes them of little use within a branch-and-bound
framework. In these formulations, swapping two identical vehicles in a feasible solution yields an equivalent solution. The
number of equivalent solutions thus increases exponentiallywith the number of vehicles, which results in poor performance
because of the time spent exploring similar nodes in the branch-and-bound tree. Reducing or eliminating symmetries is an
active subject of research, and several approaches have been proposed for this purpose, namely perturbation techniques,
variable fixing or symmetry breaking constraints. For a comprehensive survey of these techniques we refer to Margot [13].

In this section, we introduce a three-index vehicle-flow formulation that naturally eliminates symmetries. Indeed, we
use the third index to specify the facility from which the edge is being visited. Switching two facilities does not provide
an alternate equivalent solution, either because of feasibility (facility capacities may not be the same) or costs (fixed costs
and/or routing costs from two different facilities may differ). Using the same notation as for the two-index vehicle-flow
formulation, we define binary variables xie equal to 1 iff edge e is used once by a vehicle being routed from facility i ∈ I
(naturally xilj = 0 if l, i ∈ I, l ≠ i). We also let yij be a binary variable equal to 1 iff edge e = {i, j} is used twice (for single-
customer routes) by a vehicle linked to facility i. We let uij be a binary variable equal to 1 iff customer j is served from facility
i. Let us define the following notation. For an edge subset F ⊆ E and a facility subset H ⊆ I we let xH(F) =

i∈H

e∈F x
i
e,

and if H = {i} is a singleton we let xi(F) = x{i}(F). The formulation is the following:

min

i∈I

fizi +

i∈I

e∈E

cexie + 2

i∈I

j∈J

cijyij (VF3)

266 C. Contardo et al. / Discrete Optimization 10 (2013) 263–295

subject to

xi(δ({j})) + 2yij = 2uij i ∈ I, j ∈ J (10)

xi(δ(S)) + 2y({i} : S) ≥
2
Q

j∈S

djuij i ∈ I, S ⊆ J, |S| ≥ 2 (11)

j∈J

djuij ≤ bizi i ∈ I (12)

i∈I

uij = 1 j ∈ J (13)

xiij + yij ≤ uij ≤ zi i ∈ I, j ∈ J (14)

zi ∈ {0, 1} i ∈ I (15)

xie ∈ {0, 1} i ∈ I, e ∈ E (16)

ye ∈ {0, 1} e ∈ δ(I) (17)
uij ∈ {0, 1} i ∈ I, j ∈ J. (18)

Constraints (10) are a disaggregated form of the degree equations (1), whereas constraints (11) are a disaggregated form
of the capacity inequalities (2). Constraints (12) are the facility capacity inequalities. Constraints (13) are the assignment
constraints of customers to facilities. Constraints (14) link the assignment variables with the flow and location variables.

2.3. A two-index two-commodity flow formulation

Each facility node i ∈ I is considered as a source of flow, to which we associate an additional sink node i′. Let us denote
I ′ the set of sink facility nodes thus obtained, and consider the augmented undirected graph G = (V , E) with V = V ∪ I ′
and E = E ∪ {e = {i′, j} : i′ ∈ I ′, j ∈ J}. A route starting and ending at a facility i in the original graph will be mapped
to a flow in the new graph starting at i and arriving to i′. For this purpose, let us introduce the following set of continuous
variables. For every edge e = {i, j} ∈ E, we define an arc variable wij which denotes the amount of flow traversing edge
e if e is traversed from node i to node j, and wji represents the remaining capacity on the vehicle traversing this edge. If the
trip is performed in the opposite direction the roles of wij and wji are reversed. To take into account the orientation defined
by these new variables, we define for every set U ⊆ V , w(δ+(U)) =

u∈U,v∉U wuv, w(δ−(U)) =

u∈U,v∉U wvu. We keep

variables y for single-customer trips, while variables w are only used for multiple-customer routes (i.e., routes serving two
or more customers). Note that the orientation given by the w variables introduces symmetries, as the same route can now
be performed in two directions. The following set of constraints are valid for the CLRP

w(δ−({j})) − w(δ+({j})) + 2djy(I : {j}) = 2dj j ∈ J (19)

w(δ+({i})) +

j∈J

djyij ≤ bizi i ∈ I (20)

w(δ+({i′})) = Qx(δ({i})) i′ ∈ I ′ (21)

wij + wji = Qxij {i, j} ∈ E (22)

wij, wji ≥ 0 {i, j} ∈ E. (23)

Capacity constraints both for vehicles and facilities are now implied by (19)–(23). Thus, a valid formulation for the CLRP
is given by

min

i∈I

fizi +

e∈E

cexe + 2

e∈δ(I)

ceye (CF2)

subject to (1), (3)–(4), (6)–(9), (19)–(23).
Baldacci et al. [14] proved that the following flow inequalities (FI) are valid for the two-index two-commodity flow

formulation of the CVRP:

(Q − dj)wij − djwji ≥ 0 {i, j} ∈ E (24)

(Q − di)wji − diwij ≥ 0 {i, j} ∈ E. (25)

It is straightforward to verify that they are also valid for the CLRP. As stated by the following proposition, they also imply
the following y-generalized large multistar inequalities (y-GLM),

C. Contardo et al. / Discrete Optimization 10 (2013) 263–295 267

Proposition 2.1. Let S ⊆ J be a set of customers. The following y-generalized large multistar inequalities (y-GLM) are implied
by formulation (CF2) when augmented with the flow inequalities (FI):

x(δ(S)) + 2

j∈S

dj
Q
y(I : {j}) ≥

2
Q

d(S) +

h∈S
j∉S

djxhj

 . (26)

Proof. See the Appendix.

These inequalities generalize and dominate the following generalized large multistar inequalities (GLM) proposed by
Fisher [15] and Gouveia [16] for the CVRP:

x(δ(S)) + 2y(I : S) ≥
2
Q

d(S) +

h∈S
j∉S

djxhj

 S ⊆ J. (27)

The dominance comes directly from the coefficients dj/Q multiplying the terms y(I : {j}) in the y-GLMwhich are replaced
by 1 in the GLM.

2.4. A three-index two-commodity flow formulation

Let us consider the three-index vehicle-flow formulation (VF3). As for the previous formulation, we consider the
augmented graph G and we use variables wi

hj, w
i
jh for the flow traversing edge {h, j} from facility i and for the remaining

capacity in the vehicle, respectively.We keep variables yij for single-customer routes. Note that the new formulation, like the
previously introduced two-index commodity-flow formulation, introduces symmetries because each path can be performed
in two directions. For a facility i ∈ I ∪ I ′ and a node subset U ⊆ V we denote wi(δ+(U)) =

u∈U,v∉U wi

uv , w
i(δ−(U)) =

u∈U,v∉U wvu. Formulation (VF3) can thus be augmented by adding these variables and the following set of constraints:

wi(δ−({j})) − wi(δ+({j})) + 2djyij = 2djuij i ∈ I, j ∈ J (28)

wi(δ+({i})) +

j∈J

djyij ≤ bizi i ∈ I (29)

wi(δ+({i′})) = Qxi(δ({i})) i′ ∈ I ′ (30)

wi
hj + wi

jh = Qxihj i ∈ I, {h, j} ∈ E (31)

wi
hj, w

i
jh ≥ 0 i ∈ I, {h, j} ∈ E. (32)

The new formulation for the CLRP is the following

min

i∈I

fizi +

i∈I

e∈E

cexie + 2

i∈I

j∈J

cijyij (CF3)

subject to (10), (13)–(18), (28)–(32).
Note that the following disaggregated flow inequalities (DFI) are valid for this formulation

(Q − dj)wi
hj − djwi

jh ≥ 0 i ∈ I, {h, j} ∈ E (33)

(Q − dh)wi
jh − dhwi

hj ≥ 0 i ∈ I, {h, j} ∈ E. (34)

As a consequence of the extra variables added with respect to the two-index two-commodity flow formulation, this one
also implies the following y-location routing generalized large multistar inequalities (y-LRGLM),

Proposition 2.2. Let S ⊆ J be a subset of customers and let H ⊂ I be a subset of facilities. The following y-location routing
generalized largemultistar inequalities (y-LRGLM) are implied by formulation (CF3) plus the disaggregated flow inequalities (DFI).

xI\H(δ(S)) + 2

j∈S

dj
Q
y(I \ H : {j}) ≥

2
Q

i∈I\H

j∈S

djuij +

h∈S
j∉S

djx
I\H
hj

 . (35)

Proof. See the Appendix.

Remark 1. Note that the particular case H = ∅ corresponds to the y-GLM (26).

268 C. Contardo et al. / Discrete Optimization 10 (2013) 263–295

Table 1
Data associated with the example, where
Q = 13.

n px py d f b

1 20 68 180 26
2 84 28 185 26
3 1 55 2
4 43 1 3
5 65 18 13
6 16 99 8

Fig. 1. Fractional solution of (VF2) violating y-GLM by 0.19 with z = 561.3.

2.5. An illustrative example

In this sectionwe illustrate, bymeans of an example, the potential strength of the formulations introduced aswell as that
of the two classes of multistar inequalities that are valid for the two-index and the three-index formulations, respectively.
We have constructed a small instance containing four customers and two facilities. The data associated to this instance is
detailed in Table 1. In this table, columns labeled px and py represent the coordinates in the cartesian plane. The column
labeled d represents the demand of the customer nodes. Columns labeled f and b represent the fixed cost and the capacity
of each facility, respectively. The vehicle capacity is set to 13 units, and the distances between each pair of points u, v are
computed as ⌈euc(u, v)⌉, where euc is the Euclidean distance between the two points, and ⌈x⌉ is the nearest integer not
smaller than x.

We have solved the LP relaxation of each of the four formulations on this instance, as follows. The LP relaxation of
formulation (VF2) is explicitly solved by adding all possible capacity cuts (2), facility capacity inequalities (5) and chain
barring constraints (6). Fig. 1 shows the fractional solution obtained. The customers surrounded by dotted circles represent
those contributing to the violation of a y-GLM (26). The fractional values taken by the edge variables xe are also reported, and
for the edges e ∈ δ(I) we put in parentheses the values taken by each variable xe, ye separately. The labels below the facility
nodes represent the fractional values of the z variables. Formulation (CF2) is then considered. We also add constraints (2),
(5) and (6). As shown in Fig. 2, the fractional solution obtained provides a stronger lower bound when compared to the
solution of problem (VF2). We then consider formulation (VF3) also strengthened by constraints (2), (5) and (6), which is
shown to provide a stronger bound than the original two-index vehicle-flow formulation but a weaker bound than the two-
index commodity-flow formulation. Indeed, it is not possible to establish a dominance between this formulation and the
two-index commodity-flow formulation. The fractional solution plotted in Fig. 3 illustrates the solution obtained alongwith
a violated y-LRGLM (35), in which the customers surrounded by circles represent the set S and the facilities surrounded by
circles represent the set H in (35). Finally, we consider formulation (CF3) strengthened by constraints (2), (5) and (6). This

C. Contardo et al. / Discrete Optimization 10 (2013) 263–295 269

Fig. 2. Fractional solution of (CF2) with z = 593.5.

Fig. 3. Fractional solution of (VF3) violating y-LRGLM by 0.14 with z = 587.

time, as shown in Fig. 4, the lower bound associated with this formulation not only dominates the three other formulations,
but it also corresponds to an optimal integer solution of the CLRP.

3. Valid inequalities

In this section we consider several families of valid inequalities that can be used to strengthen the LP relaxation of the
previous formulations. We first describe known inequalities and then introduce new families of valid inequalities.

270 C. Contardo et al. / Discrete Optimization 10 (2013) 263–295

Fig. 4. Fractional solution of (CF3) with z = 594.

3.1. Known valid inequalities

In this subsection we describe valid inequalities that are already known for the CLRP. These include constraints for
the CVRP such as framed capacity inequalities (FrCI), strengthened comb inequalities (SCI), multistar inequalities (MSI),
hypotour inequalities (HYP), y-capacity cuts (y-CC), strengthened facility capacity inequalities (SFCI), co-circuit constraints
(CoCC) and facility degree constraints (FDC). For details on each of these inequalities we refer to Lysgaard et al. [17] and to
Belenguer et al. [3].

3.1.1. Inequalities for the CVRP
If nodes in I are contracted into a single node, the resulting problem can be seen as a CVRP instance. If a cut valid for the

CVRP is such that the coefficients of the edges joining the depot to customers do not vary with the depot (as the distance, for
instance), this cut remains valid for the CLRP by considering this contracted graph. This is the case for all of the known valid
inequalities, in particular, strengthened comb inequalities, multistar inequalities, generalized large multistar inequalities,
framed capacity inequalities and hypotour inequalities [17]. We add them all except for the generalized large multistar
inequalities which are replaced by the y-GLM (26).

3.1.2. y-capacity cuts
Let us consider constraints (2) for a given customer set S. Additionally, assume that we are given a customer subset S ′

satisfying r(S \ S ′) = r(S). The following constraint introduced by Belenguer et al. [3] and called y-capacity cut or simply
y-CC, is valid for the CLRP and dominates (2):

x(δ(S)) + 2y(I : S \ S ′) ≥ 2r(S). (36)

These inequalities were introduced and proved to be valid by Belenguer et al. [3].

3.1.3. Strengthened facility capacity inequalities
For a given facility set I ′, let us denote b(I ′) =

i∈I ′ bi. Belenguer et al. [3] proposed the following two strengthenings

for inequalities (5). Let S ⊆ J and i ∈ I be as in inequalities (5). Let I ′ ⊂ I be a subset of facilities such that i ∈ I ′. If a subset
S ′

⊂ S is such that d(S \ S ′) > b(I ′) then the following strengthened facility capacity inequality (SFCI) is valid for the CLRP:

x((I \ I ′) ∪ S̄ : S) + 2y(I \ I ′ : S \ S ′) ≥ 2. (37)

Let r(S, I ′) = ⌈(d(S) − bI ′)/Q ⌉ be a lower bound on the number of vehicles needed to serve the demand of customers
in S from facilities other that those in I ′. Note that although r(·) and r(·, ·) represent different quantities, the overloaded

C. Contardo et al. / Discrete Optimization 10 (2013) 263–295 271

notation satisfies r(S, ∅) = r(S) for every S ⊆ J . The following effective SFCI (ESFCI) is valid for the CLRP:

x((I \ I ′) ∪ S̄ : S) + 2y(I \ I ′ : S) ≥ 2r(S, I ′ \ {i}) + 2zi(r(S, I ′) − r(S, I ′ \ {i})). (38)

These inequalities were introduced and shown to be valid by Belenguer et al. [3].

3.1.4. Co-circuit constraints
The co-circuit constraints (CoCC) were originally introduced by Belenguer et al. [3]. They state that the graph resulting

from the deletion of the y variables must still have an even number of edges. They can be written as

x(δ(S) \ F) ≥ x(F) − |F | + 1 (39)

for S ⊆ J, F ⊆ δ(S) and |F | odd.

3.1.5. Facility degree constraints
The facility degree constraints (FDC) were introduced by Belenguer et al. [3] and are valid given that the routing costs

satisfy the triangle inequality. They state the sub-optimality of solutions in which two or more vehicles serve a given set of
customers if these customers can be served by fewer vehicles (thus saving routing costs). For single-customer routes they
can be written as

y(i : S) ≤ zi (40)

∀S ⊆ J such that dh + dj ≤ Q , ∀h ≠ j ∈ S, ∀i ∈ I . For general routes, they can be written as

2y(i : S) + x(i : S) + x(E(S)) ≤ 2zi + |S| − 1 (41)

∀i ∈ I, ∀S ⊆ J, r(S) = 1.

3.2. New valid inequalities

In this subsectionwe introduce new families of valid inequalities for the CLRP. These include strengthened versions of the
SFCI, ESFCI, location-routing comb inequalities (LRCOMB), location-routing generalized largemultistar inequalities (LRGLM)
and flow-assignment inequalities (FAI), all of which are valid for the two-index formulations and by extension for the three-
index formulations aswell. Moreover, we strengthen some of these inequalities for the case of the three-index formulations,
and add some novel classes of inequalities that cannot be derived from the former.

3.2.1. Flow-assignment inequalities
It is easy to verify that the following inequalities are valid for the two-index and three-index commodity-flow formula-

tions, respectively:

wij + wji ≤ Q {i, j} ∈ E (42)

wl
ij + wl

ji ≤ Q l ∈ I, {i, j} ∈ E. (43)

They can be strengthened as a consequence of the following two observations. First, for every edge e = {i, j} ∈ E, at least
one node i or j belongs to J . For that node, say j, it cannot happen at the same time that edge {i, j} is used by a vehicle serving
two or more customers and j is served by a single-customer route. Thus, the following flow-assignment inequalities (FAI)
are valid for the CLRP:

xij + y(I : {j}) ≤ 1 j ∈ J, {i, j} ∈ E. (44)

wij + wji + Qy(I : {j}) ≤ Q j ∈ J, {i, j} ∈ E. (45)

xlij + ylj ≤ ulj l ∈ I, j ∈ J, {i, j} ∈ E. (46)

wl
ij + wl

ji + Qylj ≤ Qulj l ∈ I, j ∈ J, {i, j} ∈ E. (47)

In the case of the three-index formulations, constraints (46)–(47) impose a strong relationship between the flowvariables
and the assignment variables. Indeed, if a customer is not assigned to a given facility, then all the flow variables associated
to this facility and linked to that customer are automatically set to 0.

3.2.2. Disaggregated co-circuit constraints
The co-circuit constraints (39) ensure that an even number of edges will traverse a given customer subset S ⊆ J . This

is in particular valid when restricted to the edges used by some facility. Thus, for the particular case of the three-index

272 C. Contardo et al. / Discrete Optimization 10 (2013) 263–295

formulations the following disaggregated co-circuit constraints (DCoCC) are valid for the CLRP:

xi(δ(S) \ F) ≥ xi(F) − |F | + 1 i ∈ I, S ⊆ J, F ⊂ δ(S), |F | odd. (48)

Proposition 3.1. Constraints (48) are valid for the CLRP.

Proof. See the Appendix.

3.2.3. Disaggregated facility degree constraints
Using the same reasoning as for the CoCC, the facility degree constraints (41) also have their disaggregated counterpart.

Indeed, given that the routing costs satisfy the triangle inequality, the following inequalities are valid for the three-index
formulations of the CLRP:

x(i : S) + 2y(i : S) + xi(E(S)) ≤

j∈S

uij + zi i ∈ I, S ⊆ J, d(S) ≤ Q . (49)

Proposition 3.2. Constraints (49) are valid for the CLRP.

Proof. See the Appendix.

3.2.4. Strengthened facility capacity inequalities
Let us consider inequalities (37) for given S ⊆ J and I ′ ⊆ I . If S ′

⊂ S is such that r(S \ S ′, I ′) = r(S, I ′) then we have:

x((I \ I ′) ∪ S : S) + 2y(I \ I ′ : S \ S ′) ≥ 2r(S, I ′). (50)

Proposition 3.3. Constraints (50) are valid for the CLRP.

Proof. See the Appendix.

As these constraints dominate (37), we will now refer to these inequalities as SFCI. These constraints are valid for all the
formulations studied in this paper. However, for the three-index case they can be strengthened to the following constraints:

xI\I
′

(δ(S)) + 2y(I \ I ′ : S \ S ′) ≥ 2r(S, I ′). (51)

3.2.5. Effective strengthened facility capacity inequalities
Let us consider constraints (38) for S, I ′ and i ∈ I ′. Assume that S ′

⊆ S is such that r(S \ S ′, I ′) = r(S, I ′) and
r(S \ S ′, I ′ \ {i}) = r(S, I ′ \ {i}). Then, the following inequality is valid for the CLRP and dominates (38):

x((I \ I ′) ∪ S : S) + 2y(I \ I ′ : S \ S ′) ≥ 2r(S, I ′ \ {i}) + 2zi(r(S, I ′) − r(S, I ′ \ {i})). (52)

As this inequality dominates (38), we will refer to it as the ESFCI.

Proposition 3.4. Constraints (52) are valid for the CLRP.

Proof. See the Appendix.

Just as with the SFCI, for the three-index case these inequalities can be strengthened to the following set of inequalities

xI\I
′

(δ(S)) + 2y(I \ I ′ : S \ S ′) ≥ 2r(S, I ′ \ {i}) + 2zi(r(S, I ′) − r(S, I ′ \ {i})). (53)

Remark 2. Constraints SFCI and ESFCI do not dominate each other. Moreover, we have found that their impact is comple-
mentary. When the solution of the current LP relaxation has fractional z-values, the ESFCI inequalities tend to improve the
lower boundmore significantly than do the SFCI. This often occurs in nodes close to the root of the tree, before the branching
process finishes fixing the z variables. Deeper in the tree, constraints SFCI start having a more important impact since the
sets S ′ associated to these constraints are in general larger than those of the ESFCI. Because of this, at every node of the tree
we separate constraints ESFCI for facilities i such that the value of zi lies in the interval (0, 0.85] and constraints SFCI for
every i such that zi lies in the interval (0.75, 1.0].

3.2.6. Location-routing comb inequalities
Comb inequalities were developed by Chvátal [18] for the symmetric traveling salesman problem (STSP) and have since

then received considerable attention in the literature [19,20,17]. In particular, stronger versions have been proposed for

C. Contardo et al. / Discrete Optimization 10 (2013) 263–295 273

the CVRP that take advantage of the vehicle capacities. In what follows we develop a new family of inequalities that are
shown to be valid for the CLRP and include some of the earlier inequalities as special cases. Let sets H ⊆ V (the handle),
Π = (T 1

j)
s1
j=1 ∪ (T 2

j)
s2
j=1 ⊆ P (V) (the teeth) be such that

(i) |H ∩ T | ≥ 1 T ∈ Π

(ii) |T \ H| ≥ 1 T ∈ Π

(iii) |T ∩ U| = 0 T ,U ∈ Π

(iv) |H ∩ I| = 0
(v) |T 1

j ∩ I| ≥ 1 1 ≤ j ≤ s1
(vi) |T 2

j ∩ I| = 0 1 ≤ j ≤ s2.

For notational simplicity, for every k, jwe denote Skj = T k
j ∩ J . If k = 1, we also denote Ij = T 1

j ∩ I . Let s′1 < s1 and suppose
that for each j ∈ {1, . . . , s′1} we also distinguish a special facility ij ∈ Ij that we call effective. For every set U ⊆ V = I ∪ J let
us denote

x(E(U)) =

x(E(U)) if U ∩ I = ∅

x(E(U \ I)) + x(U ∩ I : U \ I) + 2y(U ∩ I : U \ I) if U ∩ I ≠ ∅.

Let αx = x(E(H)) +
2

k=1
sk

j=1 x(E(T k
j)) and define the following constants:

r(H, T k
j) =

r(S1j , Ij \ {ij}) + r(S1j \ H, Ij \ {ij}) + r(S1j ∩ H) if k = 1, 1 ≤ j ≤ s′1
r(S1j , Ij) + r(S1j \ H, Ij) + r(S1j ∩ H) if k = 1, s′1 < j ≤ s1
r(S2j) + r(S2j \ H) + r(S2j ∩ H) if k = 2, 1 ≤ j ≤ s2

(54)

Λ(H, T 1
j) = r(S1j , Ij\{ij})+r(S1j \H, Ij\{ij})−r(S1j , Ij)−r(S1j \H, Ij) 1 ≤ j ≤ s1 (55)

r(H, Π) =

k=1,2

1≤j≤sk

r(H, T k
j). (56)

If Λ(H, T 1
j) is even for every 1 ≤ j ≤ s′1 andr(H, Π) is odd, the associated location-routing comb inequality (LRCOMB) is

αx −
1
2

1≤j≤s1

x(Ij : J) + 2y(Ij : J)

+

1≤j≤s′1

zijΛ(H, T 1
j)

 ≤ |H| +

2
k=1

t
j=1

|Skj | −

1
2
r(H, Π)

. (57)

Proposition 3.5. The location-routing comb inequality (57) is valid for the CLRP.

Proof. See the Appendix.

Remark 3. For the sake of clarity, we have assumed that s1, s2 > 0. Indeed, it is possible to omit this assumption and obtain
the associated LRCOMB as a consequence.

Remark 4. The interest of considering s′1 < s1 is the following. When a certain location variable zj assumes a value close to
1, the condition ‘‘Λ(H, T 1

j) is even’’ can be relaxed without significantly affecting the violation of a comb inequality. By pro-
ceeding in this way, it might be easier to find a violated comb inequality than if the condition ‘‘Λ(H, T 1

j) is even’’ is imposed
for all facilities involved in the constraint.

3.2.7. Location-routing generalized large multistar inequalities
We now introduce a new class of location-routing generalized large multistar inequalities that are valid for the two-

index vehicle-flow formulation and that cannot be derived from inequalities (35). For given I ′ ⊂ I, S ⊆ J , and j ∉ S, define
η(I ′, S, j) = x(S : j) + 1/2x(I ′ : {j}) + y(I ′ : {j}). The following location-routing generalized large multistar inequality
(LRGLM) is valid for the two-index vehicle-flow formulation:

x((I − I ′) ∪ S : S) + 2y(I − I ′ : S) ≥
2
Q

d(S) − b(I ′) +

j∉S

djη(I ′, S, j)

. (58)

The validity of constraints (58) is a consequence of the following lemma and proposition.

Lemma 3.6. Let I ′ ⊂ I, S ⊆ J . Let WI ′ be the set of customers that are served from facilities in I ′, and T ⊆ S ∩ WI ′ . Then
x(E(S)) + 1/2x(I ′ : S) + y(I ′ : S) ≤ |S| −

1
Q (d(S ∪ T) − b(I ′)).

Proof. See the Appendix.

274 C. Contardo et al. / Discrete Optimization 10 (2013) 263–295

Proposition 3.7. Constraint (58) is valid for the CLRP.

Proof. See the Appendix.

Remark 5. A stronger valid inequality can be obtained by replacing the right-hand side of constraint (58) by

2
Q

d(S) −

i∈I ′

bizi +

j∉S

djη(I ′, S, j)

. (59)

4. Separation algorithms

In this section we describe the separation algorithms that we use to identify violated valid inequalities from the families
introduced in Section 3. We begin by introducing a general cut lifting heuristic that takes advantage of the particular
underlying structure of some inequalities, decomposing the separation problem into two easier subproblems that are solved
sequentially. Then, we present the different separation algorithms for the inequalities presented in the paper. They include
some exact separation algorithms based on maximum flow computations as well as connected components or shrinking
heuristics. We make use of the CONCORDE Library [21] to solve the maximum flow problems as well as the connected
component problems, and the COMBO algorithm [22] for solving 0–1 knapsack problems.

4.1. A cut lifting heuristic

In this section we describe a general separation algorithm that takes advantage of the special structure of some fam-
ilies of valid inequalities. Let us consider a polytope X = {x ∈ Rn, Ax ≤ b} and denote by Y = conv(X ∩ Zn) the
convex hull of the integer points of X. Given a function f : Rn → R and a scalar g ∈ R, we say that the tuple (f , g)
is a valid inequality for Y if f (x) ≤ g for every x ∈ Y. Given two functions f : Rn → R and h : Rn → R let us de-
note by [f + h] the function [f + h](x) = f (x) + h(x). Assume that we are given a family of valid inequalities for Y,
F = {([αj + βjk], γj) : j = 1, . . . J, k = 1, . . . , Kj} with βjk(·) ≥ 0 for all j, k. Now, assume that the family F1 =

{(αj, γj) : j = 1, . . . , J} is easy to separate, in the sense that for any ϵ > 0 and x ∈ X the decision problem

∃j ∈ {1, . . . , J} such that αj(x) > γj − ϵ (P1)

is easy to solve. Assume that for given j ∈ {1, . . . , J} and x ∈ X, the problem

max
k

f (k) = βjk(x)

s.t. k ∈ Kj

(P2)

is easy to solve also, or that a good lower bound can be computed efficiently. Thus, given x ∈ X, the following heuristic aims
to find a valid cut ([αj + βjk], γj) ∈ F that is violated by x:

(i) Fix ϵ > 0 and use separation procedures for problem (P1) in order to find one or more j’s such that αj(x) > γj − ϵ. We
say that we find an ϵ–F1 cut.

(ii) For every j found in (i) solve problem (P2), obtaining k. Ifαj(x)+βjk(x) > γj then a violated inequality has been identified.

This procedure, although not exact, decomposes the problem into two easier subproblems and, as we will see later, can
take advantage of known separation algorithms for related families of inequalities. We will see that problem (P2) usually
corresponds to solving a 0–1 knapsack problem. This problem is weakly NP-hard and efficient exact algorithms have been
proposed.

4.2. CVRP inequalities

For the CVRP inequalities we make use of the separation algorithms developed by Lysgaard et al. [17] and which are
available on the following website http://www.hha.dk/~lys.

4.3. y-capacity constraints

We use the cut lifting heuristic described in Section 4.1 to exploit the well-known separation algorithms for the capacity
constraints of the CVRP. In fact, problem (P1) corresponds to the separation of the CC. Assume that a set S has been found
that solves the ϵ-CC separation problem. Problem (P2) then aims to find a subset S ′

⊆ S such that the quantity y(I : S ′)
is maximum while respecting the constraint r(S \ S ′) = r(S). This problem can be written as the following 0–1 knapsack

http://www.hha.dk/~lys

C. Contardo et al. / Discrete Optimization 10 (2013) 263–295 275

problem:

max
µ

j∈S

µjy(I : j)

s.t.

j∈S

djµj ≤

d(S) − Q (r(S) − 1) − 1 if d(S) ≢ 0(mod Q)
0 otherwise

µ ∈ {0, 1}|S|.

In our implementation, we have modified the code of Lysgaard et al. [17] to find ϵ-CC.

4.4. Strengthened facility capacity inequalities

We introduce separation algorithms for the separation of the SFCI (50). Note that as for the three-index case the
inequalities (51) dominate (50), so the separation algorithms for the latter can in fact be safely used as heuristics. The
separation for SFCI constraints (50) is performed in three stages. First, we obtain candidate sets S and facilities i ∈ I by
solving the separation problem for the particular case of |I ′| = 1, |S ′

| = 0. We refer to these specific constraints as the Basic
FCI (BFCI). Note that these constraints are enough to ensure the feasibility of solutions. For each pair of candidate sets S and
I ′ = {i}, we use a greedyheuristic to enlarge the set I ′, and at every iteration inwhich I ′ is enlarged,we compute the set S ′

⊂ S
that maximizes the quantity y(I ′, S ′) and such that r(S, I ′) = r(S \ S ′, I ′). This last problem corresponds to a 0–1 knapsack
problem with item sizes (dj)j∈S , weights (y(I ′, {j}))j∈S and knapsack capacity of either d(S) − b(I ′) − Q (r(S, I ′) − 1) − 1
if d(S) − b(I ′) ≠ 0 (mod Q) or 0 otherwise. This procedure is an application of the cut lifting heuristic described in
Section 4.1, in which the subproblem corresponds to the described knapsack problem. We now describe the separation
routine for generating the candidate sets S and {i}. To reduce the size of the support graph in the larger instances, we have
also implemented a shrinking algorithmwhich is described in the Appendix. We have implemented a shrinking heuristic, a
connected component heuristic and an exact routine for the fractional case based on a series of min-cut computations, all
of which are applied in the following order:

(i) Start applying the shrinking routine. Every time that two customers are chosen for shrinking, the shrinking heuristic is
applied to these customers.

(ii) If the shrinking process is completed and the shrinking routine is not able to find a violated BFCI we run a connected
component heuristic over the connected components of the shrunk graph.

(iii) If none of the above procedures is able to find a violated BFCI, we solve a polynomial number of min-cut problems over
the shrunk graph.

We now present in detail each of the heuristic separation procedures mentioned above.

4.4.1. Shrinking heuristic
During the execution of the shrinking routine (described in the Appendix), we check at every iteration of the algorithm

if two given super-customers h, j ∈ JS violate a BFCI, i.e., if ω∗

hj +
1
2ω

∗(i : {h, j}) + φ∗(i : {h, j}) > 2 − r({h, j}, {i}) for some
i ∈ I . If this is the case, a violated inequality is obtained. Otherwise, we continue shrinking.

4.4.2. Connected component heuristic
Given a family of weights (x′

e)e∈E , let Gx′ = (V , Ex′) be the graph induced by the edges of E with strictly positive weights
x′
e. The connected component heuristic works under the principle that if a violated BFCI exists associated to a facility i, then
there is one contained in one of the connected components of the graph Gx′ (see Lemma 4.1), with x′ defined as follows:

x′

e =

x∗

e + 2y∗

e if e ∈ δ(I)
x∗

e otherwise. (60)

Lemma 4.1. Let i ∈ I be a facility, and let S ⊆ J be a disconnected (with respect to x′) customer subset. Without loss of generality
assume that S1, S2 is a partition of S such that both S1 and S2 satisfy the CC constraints (2). Then, if (i, S) defines a violated BFCI,
(i, S1) or (i, S2) define another BFCI cut with a stronger violation as measured by the difference between the right-hand side and
left-hand side of constraint (50) evaluated in vectors (x∗, y∗).

The description of the algorithm is as follows. We start by looking at the connected components of the graph Gx′ (we
make sure that connected components of Gx′ will satisfy constraints CC during their separation). Let Sk, Ik be the customers
and facilities belonging to the kth connected component, for k = 1, . . . , Γ . Then, for every k and for every i ∈ Ik we set S ik =

Sk \ {h : y∗

lh = 1, l ≠ i}, and we iteratively check whether the pair (i, S ik) violates a BFCI or not. If it does, we have identified a
violated inequality. Otherwise we choose j ∈ S ik such that the quantity x∗(S ik \{j} : j)+1/2x∗

ij +y∗

ij + r(S ik, {i})− r(S ik \{j}, {i})
is minimum and we remove it from S ik, repeating this procedure as long as we do not find a violated cut and S ik ≠ ∅.

276 C. Contardo et al. / Discrete Optimization 10 (2013) 263–295

4.4.3. Exact separation of fractional BFCI’s
The problem of finding a violated fractional BFCI can be formulated as the solution of |I||J| minimum {s, t}-cut problems

as follows. First, fix a facility i ∈ I and a customer j ∈ J and consider the graph G′(V ′, A′) obtained from G(V , A) after deleting
node i and contracting nodes in I \ {i} in a single super node s. Define the weight of the new edges {h, k} ∈ A′, h < k as

x′

hk =

l∈I\{i}

(x∗

lk + 2y∗

lk) − 2dk/Q if h = s

x∗

hk if h ≠ s.

Although there are negative weight edges, the problem of finding a minimum {s, j}-cut can still be solved in polynomial
time as pointed out by McCormick et al. [23]. Obviously there exists an s − j cut in the modified graph of capacity smaller
than −2bi/Q for some i ∈ I, j ∈ J iff there exists a violated fractional BFCI.

4.5. Effective strengthened facility capacity inequalities

Analogously to the SFCI, note that for the three-index case, the separation procedures for constraints (52) can be safely
used as heuristics for separating constraints (53). The separation of the ESFCI (52) is performed in an analogous way to
the SFCI. In a first stage, we obtain candidate sets S and I ′ = {i} by solving the separation algorithms for the EBFCI, that
correspond to the particular case of ESFCI when |I ′| = 1, |S ′

| = 0. For every candidate pair S, I ′ = {i}, we enlarge the
set I ′ in a greedy way and after every extension we compute the set S ′ that maximizes the quantity y(I ′, S ′) and such that
r(S, I ′) = r(S \ S ′, I ′), r(S, I ′ \ {i}) = r(S \ S ′, I ′ \ {i}). Again, this problem corresponds to a 0–1 knapsack problem and is
a direct application of the cut lifting heuristic. The separation algorithms for the EBFCI are completely analogous to those
used for the BFCI and for the sake of brevity we will omit the remaining details.

Remark 6. Note that the safe shrinking result for the BFCI described in the Appendix is also safe for the separation of the
EBFCI. In fact, one can take advantage of this observation and shrink the graph just once.

4.6. Co-circuit constraints

We have implemented two heuristic procedures and an exact algorithm based on the computation of a minimum-cut
tree. Note that for a given set S, the computation of the set F such that the left-hand side of constraint (39) is minimum
can be done in linear time by defining F = {e ∈ δ(S) : xe ≤ 1/2}. If |F | is even, then we either add to or remove
from F an edge in δ(S) minimizing the increase of the left-hand side of (39). The first heuristic checks, for every customer
j ∈ S if the corresponding co-circuit constraint is violated for S = {j}. If we do not find any cut, we compute the blocks
(2-connected components) of the graph G1/2 induced by the edges {e ∈ E : ϵ ≤ xe ≤ 1 − ϵ} and whose weights are
taken as we = min{xe, 1 − xe} (for this, we have taken ϵ = 10−5). If this procedure also fails, then we solve the separation
of the blossom inequalities by computing a minimum-cut tree on the graph G1/2 using the Gomory–Hu algorithm [24].
We take as candidate handles the cuts induced by the edges of this tree. The first heuristic and the exact separation are
done as suggested by Belenguer et al. [3], while the idea of considering the blocks of the graph as candidate handles has
been successfully implemented into the separation of blossom inequalities in the CONCORDE solver for the TSP [21]. The
separation of the DCoCC is performed in an analogous way to the CoCC and, for the sake of brevity, we omit the details.

4.7. Facility degree constraints

Constraints (40) are not dynamically added but rather included at the beginning of the algorithm for the set JQ built as
follows. Let JQ = ∅ and let V be the set containing the customers in J sorted by non-decreasing demands. Pick the first
customer v ∈ V and check if dv + dj ≤ Q for all j ∈ JQ . If that is the case, then add v to JQ , remove v from V and continue.
If not, then stop. This way of constructing the set JQ generalizes the approach of Belenguer et al. [3] in which JQ is restricted
to contain customers whose demands are ≤ Q/2 by adding the possibility of adding one more customer.

For the separation of constraints (41) (respectively (49)) we have implemented two heuristics. First, we fix i ∈ I and set
S = ∅. Iterativelywe enlarge set S by adding the customer j ∉ S thatmaximizes the quantity 2y∗

ij+x∗

ij+x∗(S : j) (respectively
2y∗

ij + xi∗ij + xi∗(S : j) − uij). The algorithm terminates if either d(S) ≥ Q or a violated constraint (41) (respectively (49)) has
been detected. If this fails, we verify the violation for every y-CC generated so far during the algorithm such that d(S) ≤ Q ,
just as performed by Belenguer et al. [3].

4.8. Path constraints

To separate constraints (6) we first shrink the graph using a safe shrinking routine described in the Appendix. Once the
graph has been completely shrunk we find (if one exists) a violated constraint (6) using a greedy search heuristic or, in case
the first fails, a series of min-cut computations, which yields an exact separation algorithm.

C. Contardo et al. / Discrete Optimization 10 (2013) 263–295 277

4.8.1. Greedy search heuristic
Because solving a max-flow problem can be time-consuming, we have implemented a greedy search heuristic that aims

to find all the chains of length two or three in the shrunk graph. We simply verify for every pair or triplet of customers (in
the shrunk graph) whether they define or not a violated PC.

4.8.2. Exact separation
We have implemented the separation routine introduced by Belenguer et al. [3] for the path constraints. In our imple-

mentation, the associated maximum-flow problems are solved on the shrunk graph obtained after applying the shrinking
process described in the Appendix.

4.9. Location-routing comb inequalities

We present a tabu search algorithm for separating a subset of constraints LRCOMB in which |Tj ∩ I| ∈ {0, 1} for all j.
Given a customer set H and t teeth Π = (Tj)tj=1 we call them a pseudo-comb if they satisfy conditions (iii)–(iv) of the
definition of a comb, and |Tj ∩ I| ≤ 1 for all 1 ≤ j ≤ t . Our separation algorithm proceeds in three stages: (i) We search for
ϵ-strengthened comb inequalities (SCI), obtaining candidate handles and teeth; (ii) We use a greedy heuristic that breaks
intersections (teeth can intersect in a SCI) by deleting elements that appear in two or more teeth from those that make the
violation the greatest. If all the depots appear in a tooth, we delete all these depots except the onewith the greatest violation.
This process is repeated as many times as needed in order to obtain a pseudo-comb; (iii) For every candidate pseudo-comb
found after (i) and (ii), we proceed with the following tabu search heuristic.

Let us consider a pseudo-comb C = (H, Π = (Tj)tj=1). Define v(C) equal to the difference between the left-hand side of
(57) and the right-hand side of (57). If C is a valid comb, then v(C) represents the violation of the comb. Let us define the
following additional notation. Given a Boolean statement s ∈ {true, false}we let 1s be equal to 1 if s = true, and 0 otherwise.
Let us define the pseudo-violation µ(C) equal to

µ(C) = v(C) −

t
j=1

1H∩Tj=∅ + 1Tj\H=∅ + 1Λ(H,Tj) is odd

− 1r(H,Π) is even.

The idea of considering the pseudo-violation instead of just the violation is justified by the fact that our procedure passes
through pseudo-combs. Let T be the tabu list. A member l of T has two components, say n(l) equal to a node and pos(l)
equal to a position relative to the comb. Here pos(l) can take four values: H \ Π,H ∩ Π, Π \ H and (H, Π), where (H, Π)
is the set containing all nodes not in the pseudo-comb (H, Π). Constructed in this way, the goal of the list T is to forbid the
movement of a node n(l) to position pos(l) during a certain number of iterations.

Given a pseudo-comb C = (H, Π = (Tj)tj=1) we consider several simple neighborhoods, all of which can be evaluated
very quickly.

N1 Pick a customer j from H \ Π and remove it from C . Add (j,H \ Π) to T .
N2 Pick a customer j from H ∩ Π and remove it from H . Add (j,H ∩ Π) to T .
N3 Pick a customer j from H ∩ Π and remove it from Π . Add (j,H ∩ Π) to T .
N4 Pick a customer j from Π \ H and remove it from C . Add (j, Π \ H) to T .
N5 Pick a facility i from Π \ H and remove it from C . Add (i, Π \ H) to T .
N6 Pick a customer j from C and add it to H \ Π . Add (j, C) to T .
N7 Pick a customer j from Π \ H and add it to H . Add (j, Π \ H) to T .
N8 Pick a customer j from H \ Π and add it to Π . Add (j,H \ Π) to T .
N9 Pick a customer j from C and add it to Π \ H . Add (j, C) to T .
N10 Pick a facility i from C and add it to Π \ H . Add (i, C) to T .

The neighborhoods are sorted in such a way that removal and insertion movements are alternated. If, after inspecting
some neighborhood, we obtain a pseudo-violation of value greater than the incumbent, we update the incumbent and
restart. Otherwise, we continuewith the next neighborhood.We have found convenient to start the next iteration inspecting
the first neighborhood not inspected during the last iteration. If we finish inspecting all the neighborhoods without finding
anypseudo-combwith value greater than the incumbent,weupdate itwith the bestmovement found and restart. During the
process we do not consider movements of nodes to a tabu position, thus decreasing the probability of cycling. Note also that
for neighborhoods N5 and N10, the contribution to the pseudo-violation depends on whether we are in the case 1 ≤ j ≤ s1
or s1 < j ≤ s2 in the definition of a comb. We have chosen to make this distinction by simply considering the value of zi
in the current iteration. In fact, if zi < 0.75 we consider the first case, otherwise the second. The algorithm finishes when
we have found a valid comb with positive pseudo-violation, or when a maximum number of iterations has been performed
without success. In our experiments we have noticed that most combs were found during the first 30 iterations. We have
thus set the maximum number of iterations to 300 for the root node and 50 for the remaining nodes.

278 C. Contardo et al. / Discrete Optimization 10 (2013) 263–295

4.10. y-generalized large multistar inequalities

The separation problem for the y-GLM (26) can be performed in polynomial time by solving a maximum {s, t}-flow
problem in the following graph G′

= (V ′, E ′). Let s and t be two dummy nodes, and let V ′
= J ∪ {s, t}, E ′

= E(J) ∪ {{s, j} :

j ∈ J} ∪ {{j, t} : j ∈ J}. With every edge e ∈ E ′ we associate a capacity x′
e defined by

x′

e =

x∗(I : {j}) + 2

dj
Q

y∗(I : {j}) − 1

e = {s, j}, j ∈ J

0 e = {j, t}, j ∈ J

x∗

e

1 − 2

dj
Q

e = {h, j}, h, j ∈ J.

(61)

It is easy to verify that a maximum {s, t}-flow exists in this graph with negative value iff there is a violated y-GLM.
However, note that while maximum-flow algorithms assume positive edge capacities, this may not happen. Indeed, if
2dj ≤ Q for all j ∈ J then the usual weight transformation on the edges joined to nodes s or t suffices. Suppose, however,
that for some j ∈ J, 2dj > Q . The following transformation proposed by Blasum and Hochstättler [25] can be applied in
order to obtain a non-negative weight digraph whose minimum-cut coincides with the one we are looking for. Define for
every j ∈ J the quantities dj = min{

Q
2 , dj}, dj = dj − dj. Let us consider the following weight function:

x′

e =

x∗(I : {j}) + 2
dj
Q

y∗(I : {j}) − 1

e = {s, j}, j ∈ J

−2

v∈J

dv

Q
−

dj
Q

x∗

jv e = {j, t}, j ∈ J

x∗

hj

1 − 2

dh
Q

+
dj
Q

e = {h, j}, h, j ∈ J.

(62)

It can be verified that a maximum {s, t}-flow in this modified graph is also a maximum flow in the original graph, and
thus the separation algorithm of the y-GLM is polynomially solvable.

4.11. y-location-routing generalized large multistar inequalities

The separation of constraints (35) is performed into two stages. In the first stage, we separate what we call the Basic
y-LRGLM (B-y-LRGLM) that corresponds to a y-LRGLM in the particular case of |H| = 1. For every H = {i} ⊂ I we perform
an exact polynomial-time algorithm based on a maximum-flow computation, obtaining a candidate set S. Then, we use a
greedy algorithm for enlarging the set H by inserting at each iteration the facility that makes the violation the greatest. For
the separation of the B-y-LRGLM let us fix a facility i ∈ I . Let Gi = (Vi = J ∪ {s, t}, Ei = δ(J) ∪ ({s} : J) ∪ (J : {t})) be the
support graph, weighted as follows:

x′

e =

xI\{i}(I : j) +

2dj
Q

l∈I\{i}

(ylj − ulj)

e = {s, j}, j ∈ J

0 e = {j, t}, j ∈ J

xI\{i}hj

1 −

2dj
Q

h, j ∈ J.

(63)

Again, if the weights on the edges are negative, we apply the same transformation as for the separation of the y-GLM. It
is easy to verify that a violated B-y-LRGLM exists iff the minimum {s, t}-cut in this graph is negative.

4.12. Location-routing generalized large multistar inequalities

We have implemented the following heuristic procedure for the separation of the LRGLM (58) strengthened using as
right-hand side the expression (59). First, we use an exact algorithm for finding a ϵ-LRGLM in the particular case in which
|I ′| = 1. We call these inequalities Basic LRGLM (B-LRGLM). For every pair of sets S and I ′ = {i} found by this procedure,
we apply a greedy heuristic that iteratively enlarges I ′ and verifies the violation of the corresponding LRGLM. The exact
procedure used for the separation of the B-LRGLM is as follows.

Let i ∈ I , and let us consider a digraph whose vertex set is J ∪ {i} ∪ {s}, where s is the node obtained by the contraction
of facilities in I \ {i}. The edge set is determined by the non-zero weights in the arcs, given by

x′

uv =

−

dj
Q

(x∗

iu + 2y∗

iu) u ∈ J, v = i

x∗(I \ {i} : u) + 2y∗(I \ {i} : u) −
2du
Q

u = s, v ∈ J

x∗

uv

1 − 2

dv

Q

u, v ∈ J.

C. Contardo et al. / Discrete Optimization 10 (2013) 263–295 279

Table 2
Separation order of the valid inequalities.

Formulation Static cuts Dynamic cuts

VFF2 FAI (44), y-CC, ESFCI (52), LCI, FDC (41), CoCC, FrCI, y-GLM,
SFCI (50), SPC LRGLM, SCI, LRCOMB, MSI, HYP

VFF3
FAI (46), y-CC, ESFCI (53), LCI, FDC (41) and (49),
SFCI (51), y-GLM, CoCC, DCoCC, SPC, FrCI,
y-LRGLM, LRGLM SCI, LRCOMB, MSI, HYP

CFF2 FAI (45), y-CC, ESFCI (52), LCI, FDC (41), CoCC, FrCI, LRGLM
SFCI (50), SPC SCI, LRCOMB, MSI, HYP

CFF3 FAI (47), y-CC, LCI, CoCC, DCoCC, FDC (41) and (49),
ESFCI (53), SFCI (51) SPC, FrCI, SCI, LRCOMB, MSI, HYP

It is easy to verify that a violated LRGLM exists iff a minimum {s, i}-cut in this digraph has value less than −
2bi
Q z∗

i . In the
case of negative weights, we apply the same procedure already described for the separation of the y-GLM. Thus, the problem
of finding a LRGLM can be solved in polynomial time by computing a minimum {s, i}-cut in this graph.

5. The exact algorithms

We test the models, separation routines and valid inequalities introduced in this paper by developing four branch-and-
cut algorithms. The first, named VFF2, is a branch-and-cut over the two-index vehicle-flow formulation (VF2) augmented
by all the valid inequalities (including the existing ones and the new ones) except for those that are specific to the three-
index formulations (like the y-LRGLM and the disaggregated forms of the CoCC, FDC, SFCI and ESFCI). The second algorithm,
named VFF3, is a branch-and-cut on the three-index vehicle-flow formulation augmented by all the valid inequalities.
The third algorithm, named CFF2, is a branch-and-cut algorithm over the two-index two-commodity flow formulation
(CF2) augmented by all the inequalities except those that are specific to the three-index formulations and the y-GLM. The
fourth algorithm, named CFF3, is a branch-and-cut algorithm over the three-index two-commodity flow formulation (CF3)
augmented by all the inequalities except for y-GLM, LRGLM and y-LRGLM. For the two-commodity formulations, we also
replace vehicle-flow variables x with their corresponding commodity-flow variables w using identities (22) and (31) and
by adding (as cutting planes) inequalities (45) and (47) for the two-index and three-index formulations commodity-flow
formulations, respectively. For the vehicle-flow formulations, we also add inequalities (44) and (46) dynamically as cutting
planes. Note that although the four algorithms include all the inequalities that are not satisfied by default, our separation
strategy deactivates those that do not seempromising in certain branches of the tree. Thisway, inequalitieswill be separated
and added more or less depending on their past success in the different branches of the tree.

5.1. The separation strategies

The separation strategies for the different formulations depend on two criteria: the strength of the inequalities and the
need for feasibility. Inequalities that are needed to impose feasibility or that show an important impact on the bounds are
separated first, while the rest are added as cutting planes. After some preliminary tests, we have found that it is convenient
to separate lifted cover inequalities (LCI) and FAI inequalities before any other family of cuts. For the separation of the
LCI, we have implemented the algorithm of Gu et al. [26]. Inequalities ESFCI and SFCI that have an important impact in all
the algorithms are separated next. In third, we separate the SPC as they are needed to impose feasibility. The remaining
constraints are separated in the following order: FDC, CoCC, DCoCC, FrCI, y-GLM, y-LRGLM, LRGLM, SCI, LRCOMB, MSI and
HYP.We have chosen this order after a series of preliminary experiments inwhichwe tested several possible configurations.
We divide the inequalities into two groups: those that are statically separated (i.e., separated in every node of the branching
tree) and those for which we dynamically decide whether to separate them or not in a certain node of the branching tree. In
Table 2we describe the two groups of inequalities aswell as their separation order for each of the four different formulations
considered in our study.

At the root node, all families of cuts are separated. Moreover, all separation algorithms are used for each family. For the
FrCI, the tree size is set to a maximum of 10,000 nodes while for the LRCOMB the number of iterations of the tabu search is
set to 300.

For the separation strategy in other nodes than the root, we have implemented the following strategy. For each family
of dynamic cuts (see Table 2), say for family C, we let n(C) be the number of times that a cut of family C has been found
to be violated and thus added to the problem. We keep track of this quantity in the different branches of the tree and at
certain depths we verify whether C has been useful in the current branch. If n(C) = 0 then the family C is not separated
anymore on its descendants. For cuts such that n(C) > 0 the counter is reset to 0 and we continue separating them. After
some testing we have decided to perform this test for the first time at depth 10 and then for multiples of 5. In practice, we
have verified that very few dynamic cuts are present after depth 25. This separation strategy is inspired by the following
observation. During our preliminary tests, some families of cuts seemed to have a more important impact than others for

280 C. Contardo et al. / Discrete Optimization 10 (2013) 263–295

a subset of instances, while for other instances they did not seem to be helpful and their separation had a negative impact
on the performance of the algorithm. Moreover, this impact seemed in many cases to depend on the branch of the tree
being inspected. The dynamic separation strategy takes advantage of this observation by deactivating the cuts where they
do not seem to be helpful, but keeping themwhere they have an impact. Note also that the tree size in the separation of the
inequalities FrCI is lowered to 200 nodes, while the maximum number of iterations of the tabu search for the separation of
LRCOMB is lowered to 50.

To avoid errors due to floating point arithmetic, a certain tolerance δ > 0 must be imposed for testing the violation of a
certain cut. Moreover, if δ is too small, many cuts whose violations are very close to zero will be addedwithoutmuch impact
on the lower bound. After a series of experiments, we have decided to use δ = 0.1 for all of the cuts except for hypotour
inequalities and multistar inequalities for which the tolerance was set to δ = 0.4. Regarding the setting of the cut lifting
heuristic described in Section 4.1, we have performed a series of tests in order to choose the value of ϵ that fits best with
every cut family. The values that we have tested are ϵ equal to 0, 0.25, 0.50 and 1.0. For y-CCwe have decided to set ϵ = 0.25
at the root node and ϵ = 0 for the remaining nodes (recall that cuts are not added unless they are violated by more than
0.1). For the SFCI and ESFCI we have set ϵ = 0.25 during the whole computation.

5.2. The branching strategy

When the LP relaxation of the current node does not yield an integer solution, we branch. For this, we consider four types
of branching decisions: on the location variables z, on the routing variables x and y, on the assignment variables u and on
cutsets (see, e.g., [17,3]). Branching priorities depend on the impact on the resulting subproblems. Indeed, branching on
the location variables z has the largest impact on both the feasibility of the problems and the resulting bounds, and thus is
considered first. If there are no fractional location variables, we branch on the cutsets defined by the capacity cuts added so
far, which in our experiments has shown the secondmost important impact. For this, we use an idea proposed in Belenguer
et al. [3]. When solving the LP relaxation, each y-CC cut is added as an equality constraint by adding an extra slack variable
to the problem. We then let CPLEX branch on these slack variables. In third, but only for the three-index formulations,
we branch on the assignment variables u. Finally, we branch on the vehicle-flow variables y or x (or on their equivalent
expressions using variables w in the commodity-flow formulations) whose branching has the most marginal impact. We
have observed that while strong branching produces the smallest branching trees, the computational effort is too high and
for hard instances it is not worthwhile. On the other hand, branching on the most fractional variables leads to much larger
branching trees. Thus, we let CPLEX branch based on pseudo-costs, which we found to give the best balance between lower
bound quality and CPU time.

6. Computational experiments

In this section we describe the implementation of the algorithms as well as the results obtained on a series of instances
from the literature.

The algorithms have been coded in C++ using the Concert Technology framework of CPLEX 12.2. Tests were run on an
Intel Xeon E5462, 3.0 GHz processor with 16 GB of memory under the Linux Operating System kernel 2.6. In order to obtain
results purely related to the strength of the formulations and the cuts used in this paper, other families of cuts added by
CPLEX (such as MIR, knapsack cover, GUB, clique, etc.) have been disabled. Finally, the node selection strategy has been set
to best-first search.

We have run our algorithm on four datasets taken from the literature. The instances descriptions are as follows:

(i) Set S1 contains 17 instances adapted by Barreto [27] from other problems in the literature. Only three instances have
facilities with limited capacities. From the original set of instances we include only those with 100 customers fewer.

(ii) Set S2 contains 24 randomly generated instances from the experiments of Belenguer et al. [3]. All of the instances have
facilities with limited capacities. Customer demands are random integers in the interval [11, 20] and capacities are set
in such a way that: (1) the average number of customers served by a vehicle is either 5 or 10, and (2) two or three
facilities are required for serving the whole demand. Note that no customer with extremely low (10 units or less) or
extremely high (more than 20 units) demands is present. From the original set of instances containing 30 instances, we
only consider those with 100 customers or fewer.

(iii) Set S3 contains 12 randomly generated instances from the experiments of Akca et al. [4]. Facilities all have limited
capacities, chosen in such a way that at least two of the facilities must be open. The vehicle capacities are such that the
average number of customers per route is between 4 and 7, and that the longest route serves at most 8 customers. The
12 instances considered in our study include the complete original dataset.

(iv) Set S4 contains 6 instances with capacitated vehicles and uncapacitated facilities from the experiments of Tuzun and
Burke [10]. The fixed costs of the facilities are relatively low compared to the routing costs. From the original dataset,
we only include those instances containing 100 customers or fewer.

We have used the upper bounds reported by Baldacci et al. [5] as cutoff values during the branch-and-bound search. The
idea is tomeasure the efficiency of each of the formulations for closing the optimality gap. For a self-containedmethodology,

C. Contardo et al. / Discrete Optimization 10 (2013) 263–295 281

Table 3
Average gaps and CPU times after LP relaxation.

Family VFF2 VFF3 CFF2 CFF3
Gap (%) t (s) Gap (%) t (s) Gap (%) t (s) Gap (%) t (s)

S1 5.34 6.9 3.9 559.6 5.38 50.0 3.77 124.8
S2 4.91 303.1 3.6 2060.0 4.88 1054.0 3.53 856.2
S3 6.05 1.4 4.2 8.2 6.04 3.6 4.14 3.0
S4 16.00 44.8 5.9 2930.4 16.14 281.7 5.39 637.8

Table 4
Average gaps and CPU times after 2 h.

Family # Inst. VFF2 VFF3 CFF2 CFF3
Gap (%) t (s) Opt Gap (%) t (s) Opt Gap (%) t (s) Opt Gap (%) t (s) Opt

S1 17 1.03 2659.9 11 1.67 3111.6 10 1.11 2641.9 11 1.55 3418.1 10
S2 24 1.22 5391.5 7 1.82 5284.2 7 1.55 5417.0 6 1.68 5698.1 6
S3 12 0.00 288.9 12 0.07 859.9 11 0.05 717.4 11 0.10 1453.3 10
S4 6 1.63 5812.6 2 4.21 7363.4 0 1.99 6268.9 1 3.29 7503.2 0

these upper bounds should be obtained by a suitable heuristic, which is beyond the scope of this paper. The datasets can all
be obtained from the website http://claudio.contardo.org. We have designed and implemented five sets of experiments.

In the first set of experiments, we compute the LP relaxation lower bound for each of the four formulations, and compare
their quality as well as the CPU time taken by each of them. The results have been summarized in Table 3. Tables 8–11
in the Appendix provide detailed results. In the summarized table, columns labeled gap (%) and t (s) stand for the relative
gap (for a given lower bound zlb it is computed as (z∗

− zlb)/z∗
× 100) and the CPU time in seconds. Also, we highlight in

bold characters the formulation providing the tightest average gap on each family of instances. As shown in these tables,
algorithmsVFF3 andCFF3 normally produce, on average, the tightest lower bounds, at the expense ofmuch larger computing
times. However, algorithms VFF2 and CFF2 are the fastest to compute their respective lower bounds. There are two possible
interpretations for these results. On the one hand, compact two-index formulations give reasonably good lower bounds in
very short computing times. Therefore, much larger branching trees can be inspected during the same amount of time, with
respect to formulations with more variables. On the other hand, the lower bounds obtained by three-index formulations
are in some cases much tighter than the ones obtained by the two-index formulations. Therefore, the structure of the CLRP
is better captured in the former case, and in some instances the differences are dramatic (like on instances of set S4). One
could thus ask if it would be possible to tighten two-index formulations with valid inequalities to produce lower bounds
that are comparable to those obtained by three-index formulations.

In the second set of experiments, we have run the four algorithms for a maximum time of two hours. The objective is
to test and compare their efficiency to rapidly solve some relatively easy instances. In Table 4 we summarize the results
obtained on each family of instances. Detailed results regarding this experiment can be found in Tables 12–15 in the
Appendix. In this summarized table, columns are similar to previous tables, with a column labeled #inst . to represent the
number of instances considered in each family, and columns labeled opt to report the total number of instances that were
successfully solved to optimality. Also, we highlight in bold characters the algorithms providing the tightest average gaps
and solving the largest number of instances. As one can see, formulation VFF2 gives the best results on average. Indeed, it
is able to solve 32 instances, four more than VFF3, three more than CFF2 and 6 more than CFF3. If we look at the detailed
Tables in the Appendix, we can see that three-index formulations produce tighter gaps on instances ppw-50x5-0b and
ppw-50x5-2b. This suggests that two-index formulations are not able in those cases to capture some important underlying
information of the CLRP structure that is indeed beneficial to three-index formulations. Moreover, instance ppw-50x5-0b is
solved to optimality only by formulation VFF3. The overall conclusion is that compact two-index formulations produce the
best average results at the expense of underestimating some important information.

In the third set of experiments, we have run the algorithms for a maximum time of 12 h. The objective is to measure
the efficiency of each formulations for solving some hard instances of the CLRP. The results are summarized in Table 5, and
detailed results are reported in Tables 16–19 in the Appendix. The columns are the same as for the previous experiments.
Now, the number of instances solved is 32 for VFF2 and VFF3, 30 for CFF2 and 29 for CFF3. Note that this increase in the CPU
time has amarginal impact on the performance of two-index formulations, whereas three-index formulations seem to scale
better. This is duemainly to the fact that branching has a lower impact on trees of large size, which is typically the case with
compact two-index formulations.

In the fourth set of experiments, we compare our algorithms against the branch-and-cut method of Belenguer et al. [3].
In Table 6 we report the average results of the five methods considered. The results obtained by the method of Belenguer
et al. [3] are reported under the column labeled BBPPW, whereas columns labeled VFF2, VFF3, CFF2 and CFF3 contain the
results obtained by our algorithms after a maximum CPU time of two hours. The comparison is restricted to the instances
for which Belenguer et al. [3] reported results. The gap reported in this aggregate table now corresponds to the average
gap computed on the instances that could not be solved by any of the five methods considered. Also, column labeled t now

http://claudio.contardo.org

282 C. Contardo et al. / Discrete Optimization 10 (2013) 263–295

Table 5
Average gaps and CPU times after 12 h.

Family # Inst. VFF2 VFF3 CFF2 CFF3
Gap (%) t (s) Opt Gap (%) t (s) Opt Gap (%) t (s) Opt Gap (%) t (s) Opt

S1 17 0.90 15621.7 11 1.40 16945.8 11 0.96 15337.3 11 1.25 17153.3 11
S2 24 1.06 31173.4 7 1.28 30879.2 8 1.14 32395.4 6 1.44 31300.1 7
S3 12 0.00 288.9 12 0.00 2546.0 12 0.00 1431.0 12 0.00 4156.5 12
S4 6 1.36 30164.6 2 2.49 37502.2 1 1.51 36247.2 1 2.29 38472.7 1

Table 6
Comparison of average results with method BBPPW.

Family # Inst. BBPPW VFF2 VFF3 CFF2 CFF3
Gap t Opt Gap t Opt Gap t Opt Gap t Opt Gap t Opt

S1 10 4.48 23.7 8 3.26 9.6 9 6.10 143.8 8 3.64 28.5 9 5.76 638.4 8
S2 12 1.41 18.6 6 1.08 14.8 6 1.35 133.7 7 1.41 74.5 6 1.53 254.6 6
S3 12 – 64.0 12 – 31.9 12 – 283.8 11 – 128.6 11 – 931.2 10

Table 7
Comparison of average results with method BMW.

Family # Inst. BMW VFF2 VFF3 CFF2 CFF3
Gap t Opt Gap t Opt Gap t Opt Gap t Opt Gap t Opt

S1 15 – 62.2 15 – 12.2 10 – 168.1 10 – 44.1 10 – 676.3 10
S2 24 1.5 66.7 17 2.3 14.8 7 2.9 133.7 8 2.2 74.5 6 3.2 257.2 7
S3 12 – 165.8 12 – 288.9 12 – 2546.0 12 – 1431.0 12 – 4156.5 12
S4 6 1.6 7264.6 5 3.5 247.1 2 4.1 8247.1 1 3.7 1634.3 1 3.4 13705.4 1

represents the average CPU time on the instances that could be solved by all methods. The purpose of reporting these values
is to neglect the impact of the easy instances in the computation of the gap, or that of the hard instances in the computation
of CPU times. Note thatmethods BBPPWandVFF2 solved all instances of family S3 so it is not possible in this case to compute
the average gap on the commonly unsolved instances. Detailed results for these experiments can also be found in Tables 20–
22 in the Appendix. Also, we highlight in bold characters the method providing the tightest average gap and that solving
the largest number of instances to optimality. Note also that method BBPPW has been run on a different machine than ours,
namely an Intel Core 2 Quad Q6700 at 2.66 GHz with 2 GB of RAM, and the CPU times reported in this article are not scaled,
so comparisons based on CPU times must be done with care. As shown in this table, our implementation of the branch-and-
cut algorithm VFF2 is able to produce tighter average gaps than the others, including method BBPPW, on the commonly
unsolved instances. One can also see that method VFF2 was able to solve one instance that BBPPW did not.

In the fifth and last set of experiments, we compare the results obtained by our branch-and-cut algorithms against the
branch-and-cut-and-price method of Baldacci et al. [5]. In Table 7 we report the average results of the methods considered.
Columns VFF2, VFF3, CFF2 and CFF3 represent the results obtained by our algorithms after 12 h of computation, and column
BMW represents the average results obtained by the method of Baldacci et al. [5]. The quantities gap and t are as for the
previous experiments, i.e., the average gap is computed by taking into consideration the instances that are not solved by any
method, whereas the average CPU times are taken by considering the instances that were solved by all methods. Note that
method BMW was able to solve all instances of family S1 while all methods solved all instances of family S3. It is thus not
possible to compute the average gap on the commonly unsolved instances for these two families of instances. In Tables 23–26
in the Appendix we report the detailed results for these experiments. As before, we highlight in bold characters the method
providing the tightest average gaps as well as that solving the largest number of instances. Method BMW was run on a
different machine than ours, namely an Intel Xeon E5310 Workstation clocked at 1.6 GHz with 8 GB of RAM. Therefore, the
CPU times reportedmust only be taken as indications. As shown in this table, the exact method of Baldacci et al. [5] is able to
solvemuchmore instances than our branch-and-cutmethods, and is also able to obtain tighter average gaps on the instances
that were not solved to optimality by any method. This is not surprising since column generation algorithms are based on
much tighter formulations. Indeed, it is known that the set-partitioning formulations of vehicle-routing problems induce
many multistar and hypotour inequalities [14]. From a practical point of view, these formulations produce much tighter
lower bounds, which combined with efficient pricing algorithms, result in much more robust exact methods. This behavior
has already been observed for the capacitated vehicle routing problem [28,29], the pickup-and-delivery problem [30,31] and
the capacitated arc-routing problem [32], to name a few. When looking at the detailed results in the Appendix, one can see
that method BMW failed to solve instance ppw-50x5-2b which has been solved by algorithm VFF3, and also solves instance
ppw-50x5-0b in amuch longer time than VFF3, which suggests that some of the inequalities introduced in this paper would
deserve being included into set-partitioning formulations for future branch-and-cut-and-price algorithms.

C. Contardo et al. / Discrete Optimization 10 (2013) 263–295 283

7. Concluding remarks

We have introduced three new flow formulations for the CLRP that dominate, in terms of the LP relaxation lower bound,
the previous two-index vehicle-flow formulation of Belenguer et al. [3]. We have derived new valid inequalities for each of
the formulations and strengthen some of the previously known inequalities. In addition, we are able to obtain new classes
of multistar inequalities for the vehicle-flow formulations as linear combinations of the degree constraints and assignment
constraints for the commodity-flow formulations. For each of the inequalities used in this paper, we have introduced sepa-
ration algorithms that are either new or that generalize the separation methods introduced by Belenguer et al. [3]. We have
implemented suitable branch-and-cut algorithms using each of the three formulations introduced in this paper as well as
the original two-index vehicle-flow formulation, and presented computational results comparing them. The results show
that, in most cases, compact formulations produce the tightest gaps in the long run due to their ability to perform more
branching nodes. However, on some hard instances where facility capacities are important, three-index formulations seem
to be the right choice (like on instances ppw-50x5-0b, ppw-50x5-2b, ppw-100x5-3b, ppw-100x10-3b). This is a direct con-
sequence of an important drawback of compact two-index formulations with respect to three-index formulations, and it
is the fact that it is not possible to follow the flow leaving from a facility at every single node of the graph. We also com-
pare the algorithms used in this paper against the state-of-the-art solvers for solving the CLRP, namely the branch-and-cut
method of Belenguer et al. [3] and the branch-and-cut-and-price of Belenguer et al. [5]. The results show that our imple-
mentation of the branch-and-cut on the two-index vehicle-flow formulation produces tighter gaps than that of Belenguer
et al. [3], and is able to scale and solve large instances with up to 100 customers. The branch-and-cut-and-price algorithm of
Belenguer et al. [5] in general outperforms the flow-based algorithms; however, it is worth remarking that on two instances
(ppw-50x5-0b, ppw-50x5-2b) the three-index formulation obtained tighter gaps, and even solved ppw-50x5-2b which no
other exact method did before. These results suggest that taking into consideration the facilities from where the flow orig-
inates has significant impacts on the performance of an exact algorithm. As an avenue of future research, we believe that
embedding some of the inequalities introduced in this paper into a branch-and-cut-and-price algorithm could result in a
more robust exact algorithm for the CLRP.

Acknowledgments

The authors would like to thank two anonymous referees for their valuable comments. They are also grateful to the
Natural Sciences and Engineering Research Council of Canada (NSERC) and Le fonds québécois de la recherche sur la nature
et les technologies (FQRNT) for their financial support.

Appendix A. Proofs of lemmas and propositions

Proof of Proposition 2.1. It is direct to check that inequalities (24)–(25) imply the following inequalities:

Qwji ≤ (Q − dj)(wij + wji) {i, j} ∈ E (64)

Qwij ≥ dj(wij + wji) {i, j} ∈ E. (65)

By adding identities (19) for customers j ∈ S and after reducing we obtain

w(δ−(S)) + 2

j∈S

djy(I : {j}) = w(δ+(S)) + 2d(S).

By addingw(δ+(S)) onboth sides of the above identity andbyusing identities (22)weobtainQx(δ(S))+2

j∈S djy(I : {j})
on the left-hand side. The desired right-hand side is obtained by using constraint (65) for w(δ+(S)). �

Proof of Proposition 2.2. It is easy to see that the (DFI) imply the following inequalities:

Qwi
jh ≤ (Q − dj)(wi

hj + wi
jh) i ∈ I, {h, j} ∈ E (66)

Qwi
hj ≥ dj(wi

hj + wi
jh) i ∈ I, {h, j} ∈ E. (67)

By adding the flow conservation equations (28) for customers j ∈ S and facilities i ∈ I \ H we obtain

wI\H(δ−(S)) + 2

j∈S

djy(I \ H : {j}) = wI\H(δ+(S)) + 2

i∈I\H

j∈S

djuij.

By addingwI\H(δ+(S)) on both sides of the above identity its left-hand side becomes equal toQxI\H(δ(S))+2

j∈S djy(I \

H : {j}). For the right-hand side, we make use of the inequalities (66)–(67) to obtain wI\H(δ+(S)) ≥

h∈S
j∉S

djx
I\H
hj . �

284 C. Contardo et al. / Discrete Optimization 10 (2013) 263–295

Proof of Proposition 3.1. If xi(F) < |F | then the constraint is trivially satisfied. If xi(F) = |F |, then all the edges of F are
used by vehicles linked to facility i. Since |F | is odd, it follows that at least one edge, also linked to facility i, must be used in
δ(S) \ F . �

Proof of Proposition 3.2. If

j∈S uij = t , then exactly t customers in S are served from facility i. For those customers, say
S ′, given that d(S ′) ≤ Q , and given that the triangle inequality holds between distances, then the customers in S ′ must be
served all by the same vehicle. Indeed, if more than one vehicle serves S ′, then it is always possible to serve them at lower
cost by a single vehicle. �

Proof of Proposition 3.3. If y(I \ I ′ : S ′) = y(I \ I ′ : S ′′) = |S ′′
| then x((I \ I ′) ∪ S : S) = x((I \ I ′) ∪ (S \ S ′′) : S \ S ′′), and

then

x((I \ I ′) ∪ S : S) + 2y(I \ I ′ : S \ S ′) = x((I \ I ′) ∪ (S \ S ′′) : S \ S ′′) + 2y(I \ I ′ : S \ S ′′)

≥ r(S \ S ′′, I ′)
≥ r(S \ S ′, I ′)
= r(S, I ′). �

Proof of Proposition 3.4. Let S ′′
⊆ S ′ such that y(I \ I ′ : S ′) = y(I \ I ′ : S ′′) = |S ′′

|. This means that customer set S ′′ is
served by single vehicles from I \ I ′. Thus, x((I \ I ′) ∪ S : S) = x((I \ I ′) ∪ (S \ S ′′) : S \ S ′′) so

x((I \ I ′) ∪ S : S) + 2y(I \ I ′ : S \ S ′) = x((I \ I ′) ∪ (S \ S ′′) : S \ S ′′) + 2y(I \ I ′ : S \ S ′′)

≥ 2r(S \ S ′′, I ′ \ {i}) + 2zi(r(S \ S ′′, I ′) − r(S \ S ′′, I ′ \ {i}))
≥ 2r(S \ S ′, I ′ \ {i}) + 2zi(r(S \ S ′, I ′) − r(S \ S ′, I ′ \ {i}))
= 2r(S, I ′ \ {i}) + 2zi(r(S, I ′) − r(S, I ′ \ {i})). �

Proof of Proposition 3.5. Let us consider the SFCI and ESFCI in their weaker version that does not consider the subsets S ′.
These constraints can be written using the degree constraints as x(E(S))+

1
2x(I

′
: S)+ y(I ′ : S) ≤ |S|− r(S, I ′) (for the SFCI)

and x(E(S)) +
1
2x(I

′
: S) + y(I ′ : S) ≤ |S| − r(S, I ′ \ {i}) + zi(r(S, I ′ \ {i}) − r(S, I ′)) (for the ESFCI). We have

2αx ≤

u∈H

x(δ(u)) +

2
k=1

sk
j=1

(x(E(T k
j)) + x(E(T k

j \ H)) + x(E(T k
j ∩ H)))

≤ 2|H| +

2
k=1

sk
j=1

(x(E(T k
j)) + x(E(T k

j \ H)) + x(E(T k
j ∩ H))).

We now use the ESFCI in their inner form for 1 ≤ j ≤ s′1:

x(E(T 1
j)) ≤

1
2
x(Ij : S1j) + y(Ij : S1j) + |S1j | − r(S1j , Ij \ {ij}) + zij(r(S

1
j , Ij \ {ij}) − r(S1j , Ij))

≤
1
2
x(Ij : J) + y(Ij : J) + |S1j | − r(S1j , Ij \ {ij}) + zij(r(S

1
j , Ij \ {ij}) − r(S1j , Ij))

x(E(T 1
j \ H)) ≤

1
2
x(Ij : S1j \ H) + y(Ij : S1j \ H) + |S1j \ H| − r(S1j \ H, Ij \ {ij})

+ zij(r(S
1
j \ H, Ij \ {ij}) − r(S1j \ H, Ij))

≤
1
2
x(Ij : J) + y(Ij : J) + |S1j \ H| − r(S1j \ H, Ij \ {ij}) + zij(r(S

1
j \ H, Ij \ {ij}) − r(S1j \ H, Ij))

x(E(T 1
j ∩ H)) ≤ |S1j ∩ H| − r(S1j ∩ H)

and then

x(E(T 1
j)) + x(E(T 1

j \ H)) + x(E(T 1
j ∩ H)) ≤ x(Ij : J) + 2y(Ij : J) + 2|S1j | + zijΛ(H, T 1

j) −r(H, T 1
j).

For s′1 < j ≤ s1 we do a similar development obtaining

x(E(T 1
j)) + x(E(T 1

j \ H)) + x(E(T 1
j ∩ H)) ≤ x(Ij : J) + 2y(Ij : J) + 2|S1j | −r(H, T 1

j).

For the remaining teeth we have

x(E(T 2
j)) + x(E(T 2

j \ H)) + x(E(T 2
j ∩ H)) ≤ 2|S2j | −r(H, T 2

j).

C. Contardo et al. / Discrete Optimization 10 (2013) 263–295 285

Then, adding all these terms and bounding we obtain

2αx ≤ 2|H| +

1≤j≤s1

x(Ij : J) + 2y(Ij : J)

+

1≤j≤s′1

zijΛ(H, T 1
j) + 2

k=1,2

1≤j≤sk

|Skj | −r(H, Π).

As x(Ij : J) + 2y(Ij : J) is even for 1 ≤ j ≤ s1, Λ(H, T 1
j) is even for 1 ≤ j ≤ s′1 andr(H, Π) is odd, after dividing by 2 and

rounding the result follows. �

Proof of Lemma 3.6. If S ⊆ WI ′ then d(S ∪ T) ≤ b(I ′) and the result is implied by the SFCI. If S ⊆ W I ′ then x(E(S))+
1
2x(I

′
:

S) + y(I ′ : S) ≤ |S| −
1
Q d(S) ≤ |S| −

1
Q (d(S ∪ T) − b(I ′)). If S = S1 ∪ S2, S1 = S ∩ WI ′ , S2 = S ∩ W I ′ , then x(E(S))

+ x(I ′ : S) + y(I ′ : S) =

i=1,2 x(E(Si)) +
1
2x(I

′
: Si) + y(I ′ : Si) ≤ |S1| + |S2| −

1
Q (d(S1 ∪ T) − b(I ′) + d(S2)). �

Proof of Proposition 3.7. First, note that constraint (58) can be written, using the degree constraints, in the following
equivalent form:

x(E(S)) +
1
2
x(I ′ : S) + y(I ′ : S) +

1
Q

j∉S

djη(I ′, S, j) ≤ |S| −
1
Q

(d(S) − b(I ′)). (68)

Let us decompose the set S into three subsets S0 = {j ∈ S : η(I ′, S, j) = 0}, S1/2 = {j ∈ S : η(I ′, S, j) = 1/2} and
S1+ = {j ∈ S : η(I ′, S, j) ≥ 1}. Using this for the summation in the left-hand side of the equation (68) we have

j∉S

djη(I ′, S, j) =
1
2
d(S1/2) +

j∈S1+

djη(I ′, S, j). (69)

But now, the second term of this last expression can be decomposed and bounded above as follows:
j∈S1+

djη(I ′, S, j) =

j∈S1+

(dj − Q)η(I ′, S, j) + Q

j∈S1+

η(I ′, S, j)

≤ d(S1+) − Q |S1+| + Q

j∈S1+

η(I ′, S, j).

Thus, the left-hand side of constraint (68) can be bounded above by

x(E(S)) +
1
2
x(I ′, S) + y(I ′, S) +

1
2Q

d(S1/2) +
1
Q
d(S1+) − |S1+| +

j∈S1+

η(I ′, S, j). (70)

But now, we have

x(E(S)) +
1
2
x(I ′, S) + y(I ′, S) +

j∈S1+

η(I ′, S, j) ≤ x(E(S ∪ S1+)) +
1
2
x(I ′, S ∪ S1+) + y(I ′, S ∪ S1+).

Using this, (70) can be bounded above by

x(E(S ∪ S1+)) +
1
2
x(I ′, S ∪ S1+) + y(I ′, S ∪ S1+) +

1
2Q

d(S1/2) +
1
Q
d(S1+) − |S1+|.

Now, as S1/2 ⊆ WI ′ we can apply the lemma and thus this last expression can be bounded above by

|S ∪ S1+| −
1
Q

(d(S ∪ S1+ ∪ S1/2) − b(I ′)) +
1
2Q

d(S1/2) +
1
Q
d(S1+) − |S1+| ≤ |S| −

1
Q

(d(S) − b(I ′)). �

Proof of Lemma 4.1. S1, S2 are not connected between them nor with facility i, i.e., x∗(S1 : S2) = x∗(i : S2) = y∗(i : S2) = 0.
Suppose that (i, S) defines a violated BFCI, i.e.,

x∗(I \ {i} : S : S) + 2y∗(I \ {i} : S) < 2r(S, {i}).

But given that S1 and S2 lie in different connected components we have

x∗(I \ {i} : S : S) + 2y∗(I \ {i} : S) = x∗(δ(S2)) + 2y∗(I : S2) + x∗((I \ {i}) ∪ S1 : S1) + 2y∗(I \ {i} : S1).

Joining both relationships and taking into account that S2 satisfies the CC we have

x∗((I \ {i}) ∪ S1 : S1) + 2y∗(I \ {i} : S1) < 2r(S, {i}) − [x∗(δ(S2)) + 2y∗(I : S2)]
≤ 2r(S, {i}) − 2r(S2)
≤ 2r(S1, {i})

and the result follows. �

286 C. Contardo et al. / Discrete Optimization 10 (2013) 263–295

Appendix B. Shrinking routines

In this appendix we present the shrinking routines used in the separation of some of the valid inequalities.

B.1. A shrinking routine for the separation of constraints BFCI

In what follows we denote by ω∗, φ∗ the weight functions obtained from x∗ and y∗, respectively, after successive
contractions, and we keep x∗, y∗ for the weights in the original unshrunk graph. We denote by d∗ the aggregated demands
of super-customers as well, whose set we denote by JS . A super-customer comprises the set of all customers that have been
shrunk to the same super-node. We will show that it is safe to shrink two customers h, j ∈ JS whenever

(i) d∗

h + d∗

j ≤ Q and
(ii) [ω∗

hj ≥ 1] or [φ∗

ih ≥ 1 and φ∗

ij ≥ 1].

Let us start by fixing a facility i. We will first show that for the separation of a BFCI using facility i it is safe to shrink any
pair of nodes h and j in JS satisfying only condition ii. If this is the case and [φ∗

ih ≥ 1 and φ∗

ij ≥ 1], the new weights for the
shrunk node {h, j} are

• ω∗

{h,j}v = 0 for all v ∈ I ∪ (JS \ {h, j})

• φ∗

{h,j}v =

1 if v = i
0 otherwise.

Otherwise (i.e., if ω∗

hj ≥ 1), the new weights are recalculated using the usual rule, as follows:

• ω∗

{h,j}v = ω∗

hv + ω∗

jv for all v ∈ I ∪ (JS \ {h, j}).

Remark 7. For every super-customer h in the shrunk graph, it is true that ω∗(δ(h)) + 2φ∗(I : h) = 2.

Lemma B.1. For fixed i ∈ I , it is safe to shrink nodes h, j ∈ JS such that ω∗

hj ≥ 1 or [φ∗

ih ≥ 1 and φ∗

ij ≥ 1].

Proof. Let h, j ∈ JS be such that ω∗

hj ≥ 1 or [φ∗

ih ≥ 1 and φ∗

ij ≥ 1]. Let S ⊆ JS be a customer set crossing {h, j},
i.e., S ∩ {h, j}, S \ {h, j} and {h, j} \ S ≠ ∅. Without loss of generality we suppose that j ∈ S, h ∉ S. We will show that
T = S ∪ {h} produces a violation of value at least that of S. Let us define σi(T) = ω∗((I \ {i}) ∪ T : T) + 2φ∗(I \ {i} : T).
Because r(S, {i}) ≤ r(T , {i}) it suffices to show that σi(T) ≤ σi(S). In fact

σi(T) − σi(S) = [ω∗(δ(T)) + 2φ∗(I : T)] − [ω∗(δ(S)) + 2φ∗(I : S)]
+ [ω∗(i : S) − ω∗(i : T)] + 2[φ∗(i : S) − φ(i : T)]

= [ω∗(δ(T)) + 2φ∗(I : T)] − [ω∗(δ(S)) + 2φ∗(I : S)] − [ω∗

ih + 2φ∗

ih].

The submodularity of the cut function implies

[ω∗(δ(T)) + 2φ∗(I : T)] − [ω∗(δ(S)) + 2φ∗(I : S)] ≤ [ω∗(δ({h, j})) + 2φ∗(I : {h, j})] − [ω∗(δ(j)) + 2φ∗(I : j)]

and then

σi(T) − σi(S) ≤ ω∗(δ(h)) + 2φ∗(I : h) − 2ω∗

hj − (ω∗

ih + 2φ∗

ih)

≤ 2 − 2ω∗

hj − (ω∗

ih + 2φ∗

ih).

The result follows by applying the shrinking hypothesis. �

Remark 8. If φ∗

ih = 1 and φ∗

ij = 1 it is not true that the shrinking of h and j is safe when considering a BFCI using a different
facility, say l. In fact, in such a case, the last inequality in the proof above will be σl(T) − σl(S) ≤ 2 − 2ω∗

hj − (ω∗

lh + 2φ∗

lh)

which is equal to 2. The next lemma proves, however, that in this case and whenever d∗

j ≤ Q and d∗

h ≤ Q , h and j can be
safely omitted from any BFCI containing facility l.

Lemma B.2. Let h ∈ JS be such that φ∗

ih = 1 and d∗

h ≤ Q . It is safe to omit node h from any BFCI containing a facility l ≠ i.

Proof. Let T ⊆ JS and h ∈ T be such that φ∗

ih = 1, d∗

h ≤ Q . Let us denote S = T \ {h}. Because h is linked only to facility
i, we have ω∗((I \ {l}) ∪ S : S) = ω∗((I \ {l}) ∪ T : T). We also have φ∗(I \ {l} : S) = φ∗(I \ {l} : T) − 1. It follows
that ω∗((I \ {l}) ∪ S : S) + 2φ∗(I \ {l} : S) = ω∗((I \ {l}) ∪ T : T) + 2φ∗(I \ {l} : T) − 2. If T and k violate a BFCI then
ω∗((I \ {l}) ∪ T : T) + 2φ∗(I \ {l} : T) < 2r(T , {l}) ≤ 2(r(S, {l}) + 1) and the result follows. �

The following corollary follows as a consequence of Lemmas B.1 and B.2.

C. Contardo et al. / Discrete Optimization 10 (2013) 263–295 287

Corollary B.3. It is safe to shrink customers h, j such that

(i) d∗

h + d∗

j ≤ Q and
(ii) ω∗

hj ≥ 1 or φ∗

ih = φ∗

ij = 1 for some i ∈ I .

B.2. A shrinking routine for the separation of path constraints

Using the same notation as for the shrinking routine introduced for the BFCI, let JS be the customer set containing the
shrunk customers, and let ω∗, φ∗ be the edge weights in the shrunk graph. The following proposition gives a safe condition
for shrinking customer nodes during the separation of constraints (6).

Proposition B.4. For the path constraints (6) it is safe to shrink customers u, v ∈ JS such that ω∗
uv ≥ 1 and ω∗(I : u) = ω∗(I :

v) = 0.

Proof. Let S ⊆ JS be a customer set in the shrunk graph crossing the set {u, v}, i.e., S ∩ {u, v}, S \ {u, v}, {u, v} \ S ≠ ∅.
Without loss of generality, we suppose that u ∈ S, v ∉ S. We will show that the set T = S ∪ {v} induces a violation of value
at least the same as that induced by S. First note that if u or v take the role of nodes h or j in inequality (6) then it will not
be violated. As a consequence of this, nodes that can take the place of h or j are among those that have not been shrunk. Let
us compute the left-hand side of inequality (6) for S and T , that we denote as α(S) and α(T), respectively, and see that they
satisfy the following relationship:

α(T) = α(S) + ω∗(δ(v)) − 2ω∗(v : S)
≤ α(S).

As the right hand side of the inequality is the same for both S and T , the violation incurred by set T is bigger than that of
S and the result follows. �

Appendix C. Detailed results

In this appendix we report detailed results for our algorithms and comparisons to themethods of Belenguer et al. [3] and
Baldacci et al. [5].

In Tables 8–11 we report the gaps (in %) and CPU times (in seconds) after solving the LP relaxations for each of the four
formulations included in our study. Columns labeled z∗ stand for the best known solutions as reported by Baldacci et al. [5].
Columns gap and t stand for the gaps and CPU times obtained by the algorithms. Given a lower bound zlb, the gap is computed
as (z∗

− zlb)/z∗
× 100. For sets S1 and S2 we also subdivide the instances into small (with at most 50 customers) and large

instances (with more than 50 customers).
In Tables 12–15we report the gaps (in %) and CPU times (in seconds) after running each of the algorithms for amaximum

of two hours. In addition to the columns gap and t , we now also report under the columns labeled nodes the number of nodes
inspected by the branch-and-cut algorithms.

Table 8
Gaps and CPU times after LP relaxation on instances of set S1 .

Instance z∗ VFF2 VFF3 CFF2 CFF3
Gap t Gap t Gap t Gap t

Perl83-12x2 204.00 0.61 0.01 0.00 0.03 0.48 0.08 0.00 0.03
Gas67-21x5 424.90 3.99 0.21 3.12 0.84 4.12 0.44 2.98 0.53
Gas67-22x5 585.11 0.10 0.04 0.10 0.24 0.10 0.07 0.10 0.41
Min92-27x5 3062.02 5.62 0.29 2.15 2.26 6.24 0.39 2.64 1.32
Gas67-29x5 512.10 4.89 0.46 3.26 2.11 4.76 1.90 3.64 1.74
Gas67-32x5 562.22 5.72 0.51 3.90 3.59 5.72 1.26 4.05 1.33
Gas67-32x5-2 504.33 3.27 0.80 1.86 2.17 3.24 1.25 2.19 1.29
Gas67-36x5 460.37 1.30 1.40 1.16 8.28 1.35 5.35 0.71 9.42
Chr69-50x5ba 565.62 5.62 3.74 4.41 14.32 5.63 6.40 3.83 6.76
Chr69-50x5be 565.60 8.85 3.04 7.34 16.15 8.82 15.44 5.90 5.45

Perl83-55x15 1112.06 3.42 6.17 2.44 676.90 3.42 14.29 2.06 64.25
Chr69-75x10ba 886.30 14.47 23.54 11.67 1406.12 14.63 164.87 11.47 306.63
Chr69-75x10be 848.85 10.42 15.25 7.77 1920.82 9.84 227.24 7.40 284.03
Chr69-75x10bmw 802.08 9.27 20.18 6.68 1165.53 9.69 92.79 6.58 237.99
Perl83-85x7 1622.50 2.53 18.93 2.06 966.41 2.53 199.44 1.96 153.35
Das95-88x8 355.78 5.73 13.15 4.81 1028.53 6.03 66.88 4.73 336.98
Chr69-100x10 833.43 4.89 9.71 4.07 2299.52 4.82 51.37 3.79 709.63

Average 5.34 6.91 3.93 559.64 5.38 49.97 3.77 124.77
Average on small instances 4.00 1.05 2.73 5.00 4.05 3.26 2.60 2.83
Average on large instances 7.25 15.28 5.64 1351.98 7.28 116.70 5.43 298.98

288 C. Contardo et al. / Discrete Optimization 10 (2013) 263–295

Table 9
Gaps and CPU times after LP relaxation on instances of set S2 .

Instance z∗ VFF2 VFF3 CFF2 CFF3
Gap t Gap t Gap t Gap t

ppw-20x5-0a 54793 4.57 0.35 3.74 1.00 4.54 0.83 3.89 0.68
ppw-20x5-0b 39104 0.00 0.02 0.00 0.10 0.00 0.04 0.00 0.14
ppw-20x5-2a 48908 2.71 0.26 2.31 0.59 2.78 0.76 2.35 0.53
ppw-20x5-2b 37542 0.00 0.01 0.00 0.06 0.00 0.02 0.00 0.10
ppw-50x5-0a 90111 10.94 27.10 5.98 100.66 10.89 51.78 5.88 26.38
ppw-50x5-0b 63242 7.50 5.05 6.64 28.54 7.76 14.70 6.67 16.58
ppw-50x5-2a 88298 7.52 5.08 5.81 36.84 7.50 17.22 5.84 11.04
ppw-50x5-2b 67308* 5.63 2.75 5.74 16.20 5.66 12.78 5.72 16.38
ppw-50x5-2a’ 84 055 1.95 29.50 1.89 65.33 1.97 125.81 1.93 25.09
ppw-50x5-2b’ 51 822 0.86 1.76 0.72 19.48 0.85 3.51 0.82 9.82
ppw-50x5-3a 86203 10.23 14.67 5.15 72.97 10.20 52.76 5.26 25.99
ppw-50x5-3b 61830 6.26 4.38 5.30 23.36 5.84 9.94 5.22 9.67

ppw-100x5-0a 274814 3.56 2509.03 2.82 4955.67 3.59 3117.51 2.86 1218.73
ppw-100x5-0b 214392 3.21 391.48 3.09 5605.32 3.18 1508.11 3.33 10298.00
ppw-100x5-2a 193671 3.77 365.93 2.17 2402.35 3.81 3127.55 2.21 460.93
ppw-100x5-2b 157173 2.34 83.27 1.91 816.75 2.32 613.30 1.96 365.99
ppw-100x5-3a 200079 8.82 108.07 2.23 2331.79 8.81 1664.74 2.39 441.84
ppw-100x5-3b 152441 5.08 27.40 2.62 792.25 5.08 148.33 2.66 163.83
ppw-100x10-0a 289018 7.88 1133.84 5.78 7281.82 7.34 4708.86 4.97 1249.72
ppw-100x10-0b 234641 4.74 147.20 4.53 4060.38 4.78 1235.21 4.45 1638.18
ppw-100x10-2a 243590 4.07 1473.84 3.28 7285.58 4.11 3823.62 3.21 1214.73
ppw-100x10-2b 203988 2.50 90.42 2.48 1928.96 2.46 612.71 2.34 1308.84
ppw-100x10-3a 252421 8.65 740.38 6.17 7228.90 8.72 3433.17 6.28 1188.19
ppw-100x10-3b 204597 5.00 112.22 4.75 4384.28 4.99 1011.74 4.60 857.56

Average 4.91 303.08 3.55 2059.97 4.88 1053.96 3.53 856.21
Average on small instances 4.85 7.58 3.61 30.43 4.83 24.18 3.63 11.87
Average on large instances 4.97 598.59 3.49 4089.50 4.93 2083.74 3.44 1700.55
* New upper bound found.

Table 10
Gaps and CPU times after LP relaxation on instances of set S3 .

Instance z∗ VFF2 VFF3 CFF2 CFF3
Gap t Gap t Gap t Gap t

cr30x5a-1 819.5 3.33 0.89 2.06 3.71 3.29 1.62 2.99 2.09
cr30x5a-2 821.5 5.89 0.41 5.29 2.61 5.90 0.97 4.92 1.67
cr30x5a-3 702.3 0.56 0.71 0.09 2.52 0.73 1.22 0.38 2.66
cr30x5b-1 880.0 7.39 0.52 5.91 3.00 7.35 1.55 5.61 1.35
cr30x5b-2 825.3 3.52 1.31 1.65 3.71 3.62 3.31 1.72 1.54
cr30x5b-3 884.6 3.33 1.09 2.14 4.47 3.25 2.73 2.20 2.01
cr40x5a-1 928.1 8.95 1.32 8.01 9.20 8.96 3.28 7.08 2.01
cr40x5a-2 888.4 8.83 1.04 6.17 9.91 8.92 1.95 6.09 3.63
cr40x5a-3 947.3 7.47 2.48 6.31 9.43 7.45 7.56 5.50 4.91
cr40x5b-1 1052.0 10.26 2.80 6.64 16.68 10.13 6.70 6.52 4.66
cr40x5b-2 981.5 8.57 1.26 3.70 16.18 8.42 4.55 3.79 5.41
cr40x5b-3 964.3 4.51 2.32 2.92 17.40 4.46 8.22 2.94 3.94

Average 6.05 1.35 4.24 8.23 6.04 3.64 4.14 2.99

Table 11
Gaps and CPU times after LP relaxation on instances of set S4 .

Instance z∗ VFF2 VFF3 CFF2 CFF3
Gap t Gap t Gap t Gap t

P111112 1467.69 12.64 16.31 7.94 2180.38 12.60 119.93 6.91 313.17
P111212 1394.8 15.92 41.04 11.37 1763.18 15.91 214.59 9.09 451.88
P112112 1167.16 11.69 42.24 3.69 3245.86 11.91 339.71 3.72 547.29
P112212 791.66 19.99 53.95 2.97 1021.34 20.01 111.13 2.94 274.73
P113112 1245.45 19.27 31.51 7.84 4987.70 19.51 130.71 7.74 637.84
P113212 902.26 16.49 83.95 1.82 4383.76 16.90 774.21 1.96 1601.76

Average 16.00 44.83 5.94 2930.37 16.14 281.71 5.39 637.78

C. Contardo et al. / Discrete Optimization 10 (2013) 263–295 289

Table 12
Gaps and CPU times after 2 h on instances of set S1 .

Instance z∗ VFF2 VFF3 CFF2 CFF3
Gap t Nodes Gap t Nodes Gap t Nodes Gap t Nodes

Perl83-12x2 204.00 0.00 0.02 0 0.00 0.05 0 0.00 0.11 3 0.00 0.08 0
Gas67-21x5 424.90 0.00 0.59 26 0.00 4.29 19 0.00 1.91 39 0.00 4.76 20
Gas67-22x5 585.11 0.00 0.07 0 0.00 0.45 1 0.00 0.19 7 0.00 1.41 9
Min92-27x5 3062.02 0.00 0.73 5 0.00 3.94 3 0.00 1.78 20 0.00 7.87 6
Gas67-29x5 512.10 0.00 1.01 10 0.00 7.28 13 0.00 3.84 20 0.00 18.06 11
Gas67-32x5 562.22 0.00 1.76 47 0.00 19.90 39 0.00 4.98 39 0.00 27.58 47
Gas67-32x5-2 504.33 0.00 1.01 2 0.00 4.72 5 0.00 2.32 7 0.00 3.96 9
Gas67-36x5 460.37 0.00 2.80 4 0.00 15.50 7 0.00 12.07 16 0.00 43.64 23
Chr69-50x5ba 565.62 0.00 44.78 224 0.00 530.77 169 0.00 212.91 384 0.00 1655.58 314
Chr69-50x5be 565.60 0.00 68.79 232 0.00 1093.98 351 0.00 200.49 258 0.00 4999.94 476

Perl83-55x15 1112.06 0.70 7496.92 2755 1.45 7269.41 30 0.85 7193.60 1090 1.14 7215.43 98
Chr69-75x10ba 886.30 9.03 7408.62 1869 10.67 7401.99 16 9.07 7193.13 1304 10.38 7315.95 22
Chr69-75x10be 848.85 3.26 7367.52 2394 6.10 7339.88 18 3.64 7193.51 1293 5.76 7472.10 28
Chr69-75x10bmw 802.08 3.37 7468.83 1766 5.25 7351.64 22 3.69 7194.08 1403 5.16 7417.08 30
Perl83-85x7 1622.50 0.68 7557.62 1404 1.29 7259.75 14 0.75 7193.95 1044 1.17 7250.88 19
Das95-88x8 355.78 0.00* 411.15 129 0.73 7267.20 8 0.00* 1308.87 289 0.32 7275.53 21
Chr69-100x10 833.43 0.51 7385.58 1777 2.83 7326.33 9 0.80 7193.80 330 2.46 7397.48 17

Average 1.03 2659.87 744 1.67 3111.59 43 1.11 2641.86 444 1.55 3418.08 68
Instances solved 11 10 11 10

Average on small instances 0.00 12.16 55 0.00 168.09 61 0.00 44.06 79 0.00 676.29 92
Small instances solved 10 10 10 10

Average on large instances 2.51 6442.32 1728 4.05 7316.60 17 2.69 6352.99 965 3.77 7334.92 34
Large instances solved 1 0 1 0
* Optimality proven for the first time.

Table 13
Gaps and CPU times after 2 h on instances of set S2 .

Instance z∗ VFF2 VFF3 CFF2 CFF3
Gap t Nodes Gap t Nodes Gap t Nodes Gap t Nodes

ppw-20x5-0a 54793 0.00 5.04 704 0.00 12.61 2 0.00 21.70 1009 0.00 25.59 197
ppw-20x5-0b 39104 0.00 0.03 0 0.00 0.16 0 0.00 0.11 8 0.00 0.50 6
ppw-20x5-2a 48908 0.00 1.31 137 0.00 5.93 1 0.00 4.65 191 0.00 7.44 77
ppw-20x5-2b 37542 0.00 0.02 0 0.00 0.12 0 0.00 0.08 9 0.00 0.49 3
ppw-50x5-0a 90111 1.77 7336.51 9778 2.46 7207.13 186 2.39 7193.53 5286 2.78 7210.67 949
ppw-50x5-0b 63242 1.23 7304.54 16772 0.00 1865.40 59 1.77 7193.39 6014 0.38 7199.65 1608
ppw-50x5-2a 88298 1.00 7265.57 13181 1.05 7198.80 193 1.21 7193.73 8548 1.24 7197.10 1990
ppw-50x5-2b 67308 1.17 7282.73 17630 0.68 7199.72 114 1.50 7193.41 7854 0.87 7201.81 1086
ppw-50x5-2a’ 84055 0.28 7244.32 24306 0.48 7203.79 183 0.49 7193.36 11205 0.55 7203.78 1949
ppw-50x5-2b’ 51822 0.00 10.64 134 0.00 136.19 7 0.00 41.93 289 0.00 125.11 91
ppw-50x5-3a 86203 1.16 7283.89 4915 2.09 7199.29 113 1.46 7194.24 2894 2.20 7210.56 632
ppw-50x5-3b 61830 0.00 71.76 596 0.00 647.18 17 0.00 378.75 1000 0.00 1368.30 348

ppw-100x5-0a 274814 2.36 7293.80 350 2.82 7454.50 185 2.48 7196.30 119 2.68 7515.34 77
ppw-100x5-0b 214392 2.19 7420.00 460 3.09 7438.56 111 2.41 7197.83 197 3.33 10298.00 0
ppw-100x5-2a 193671 1.60 7398.86 726 2.17 7413.93 118 1.65 7196.96 505 2.21 7281.76 0
ppw-100x5-2b 157173 0.78 7323.10 1777 1.40 7270.06 97 0.88 7195.16 531 1.17 7231.19 12
ppw-100x5-3a 200079 1.44 7340.95 1379 1.93 7316.05 364 1.64 7197.17 546 1.64 7270.58 290
ppw-100x5-3b 152441 0.57 7332.99 1225 0.74 7240.37 204 0.49 7196.00 329 0.85 7272.68 25
ppw-100x10-0a 289018 3.74 7394.33 59 5.78 7281.82 114 7.02 7243.67 0 4.49 7455.56 369
ppw-100x10-0b 234641 2.48 7334.20 821 4.50 7509.37 68 2.98 7194.80 32 4.17 7919.87 5
ppw-100x10-2a 243590 1.40 7351.82 764 3.28 7285.58 95 1.54 7197.52 73 2.10 7505.96 330
ppw-100x10-2b 203988 0.00 4734.83 8710 0.97 7293.31 24 0.11 7193.51 1698 0.82 7410.55 30
ppw-100x10-3a 252421 4.02 7326.18 85 6.17 7228.90 100 4.70 7195.95 16 4.98 7459.89 579
ppw-100x10-3b 204597 2.15 7338.32 1033 4.00 7412.70 55 2.55 7194.91 56 3.95 7382.64 4

Average 1.22 5391.49 4398 1.82 5284.23 100 1.55 5417.03 2017 1.68 5698.13 444
Instances solved 7 7 6 6

Average on small instances 0.55 3650.53 7346 0.56 3223.03 73 0.73 3634.07 3692 0.67 3729.25 745
Small instances solved 6 7 6 6

Average on large instances 1.89 7132.45 1449 3.07 7345.43 128 2.37 7199.98 342 2.70 7667.00 143
Large instances solved 1 0 0 0

290 C. Contardo et al. / Discrete Optimization 10 (2013) 263–295

Table 14
Gaps and CPU times after 2 h on instances of set S3 .

Instance z∗ VFF2 VFF3 CFF2 CFF3
Gap t Nodes Gap t Nodes Gap t Nodes Gap t Nodes

cr30x5a-1 819.5 0.00 3.23 67 0.00 27.25 11 0.00 7.65 88 0.00 35.05 46
cr30x5a-2 821.5 0.00 8.77 663 0.00 44.50 253 0.00 59.83 1244 0.00 38.20 234
cr30x5a-3 702.3 0.00 0.91 0 0.00 3.50 0 0.00 1.77 38 0.00 7.82 27
cr30x5b-1 880.0 0.00 9.05 395 0.00 86.25 235 0.00 34.66 439 0.00 90.66 184
cr30x5b-2 825.3 0.00 2.55 8 0.00 14.78 9 0.00 7.26 113 0.00 14.57 43
cr30x5b-3 884.6 0.00 3.25 40 0.00 21.85 11 0.00 11.06 137 0.00 28.52 92
cr40x5a-1 928.1 0.00 140.31 1308 0.00 1391.66 783 0.00 608.40 1342 0.14 7328.59 2143
cr40x5a-2 888.4 0.00 86.31 1655 0.00 591.68 601 0.00 203.61 935 0.00 1059.93 692
cr40x5a-3 947.3 0.00 76.63 1019 0.00 785.90 463 0.00 409.66 1286 0.00 1494.26 542
cr40x5b-1 1052.0 0.00 3115.92 21471 0.86 7197.27 2396 0.57 7193.77 9358 1.03 7196.37 2243
cr40x5b-2 981.5 0.00 7.61 25 0.00 104.38 45 0.00 46.77 1011 0.00 91.69 85
cr40x5b-3 964.3 0.00 12.33 20 0.00 50.08 31 0.00 24.30 74 0.00 54.01 49

Average 0.00 288.91 2223 0.07 859.93 403 0.05 717.39 1339 0.10 1453.31 532
Instances solved 12 11 11 10

Table 15
Gaps and CPU times after 2 h on instances of set S4 .

Instance z∗ VFF2 VFF3 CFF2 CFF3
Gap t Nodes Gap t Nodes Gap t Nodes Gap t Nodes

P111112 1467.69 2.76 7529.07 427 5.69 7389.51 9 3.17 7197.69 125 5.01 7361.46 25
P111212 1394.8 2.86 7444.58 594 8.39 7341.34 10 3.99 7193.81 147 6.42 7471.62 28
P112112 1167.16 0.49 7362.85 2205 2.22 7331.45 10 0.72 7197.28 542 2.22 7533.47 7
P112212 791.66 0.00 4980.13 8747 0.98 7326.49 10 0.20 7194.37 2763 0.97 7365.17 7
P113112 1245.45 3.64 7312.07 1954 7.83 7417.84 2 3.86 7195.71 537 4.99 7598.02 13
P113212 902.26 0.00 247.09 33 0.15 7373.92 3 0.00 1634.29 139 0.13 7689.31 5

Average 1.63 5812.63 2327 4.21 7363.43 7 1.99 6268.86 709 3.29 7503.18 14
Instances solved 2 0 1 0

Table 16
Gaps and CPU times after 12 h on instances of set S1 .

Instance z∗ VFF2 VFF3 CFF2 CFF3
Gap t Nodes Gap t Nodes Gap t Nodes Gap t Nodes

Perl83-12x2 204.00 0.00 0.02 0 0.00 0.05 0 0.00 0.11 3 0.00 0.08 0
Gas67-21x5 424.90 0.00 0.59 26 0.00 4.29 19 0.00 1.91 39 0.00 4.76 20
Gas67-22x5 585.11 0.00 0.07 0 0.00 0.45 1 0.00 0.19 7 0.00 1.41 9
Min92-27x5 3062.02 0.00 0.73 5 0.00 3.94 3 0.00 1.78 20 0.00 7.87 6
Gas67-29x5 512.10 0.00 1.01 10 0.00 7.28 13 0.00 3.84 20 0.00 18.06 11
Gas67-32x5 562.22 0.00 1.76 47 0.00 19.90 39 0.00 4.98 39 0.00 27.58 47
Gas67-32x5-2 504.33 0.00 1.01 2 0.00 4.72 5 0.00 2.32 7 0.00 3.96 9
Gas67-36x5 460.37 0.00 2.80 4 0.00 15.50 7 0.00 12.07 16 0.00 43.64 23
Chr69-50x5ba 565.62 0.00 44.78 224 0.00 530.77 169 0.00 212.91 384 0.00 1655.58 314
Chr69-50x5be 565.60 0.00 68.79 232 0.00 1093.98 351 0.00 200.49 258 0.00 4999.94 476

Perl83-55x15 1112.06 0.45 44278.60 14429 1.09 43228.20 85 0.57 43163.30 8651 0.77 43188.20 430
Chr69-75x10ba 886.30 8.53 43923.00 9619 10.31 43345.80 30 8.55 43162.10 7889 9.37 43289.40 452
Chr69-75x10be 848.85 2.69 43902.30 12090 5.58 43353.70 33 2.95 43161.20 7070 4.44 43355.40 102
Chr69-75x10bmw 802.08 2.91 44528.40 8496 4.44 43315.00 66 3.20 43166.10 8238 4.12 43409.60 189
Perl83-85x7 1622.50 0.52 44470.70 6905 0.84 43224.30 98 0.59 43164.30 6428 0.87 43215.60 93
Das95-88x8 355.78 0.00 411.15 129 0.00 26533.80 99 0.00 1308.87 289 0.00 25008.10 160
Chr69-100x10 833.43 0.26 43933.90 9206 1.51 43396.80 61 0.47 43168.30 1891 1.72 43376.40 52

Average 0.90 15621.74 3613 1.40 16945.79 63 0.96 15337.34 2426 1.25 17153.27 141
Instances solved 11 11 11 11

Average in small instances 0.00 12.16 55 0.00 168.09 61 0.00 44.06 79 0.00 676.29 92
Small instances solved 10 10 10 10

Average in large instances 2.19 37921.15 8696 3.39 40913.94 67 2.33 37184.88 5779 3.04 40691.81 211
Large instances solved 1 1 1 1

C. Contardo et al. / Discrete Optimization 10 (2013) 263–295 291

Table 17
Gaps and CPU times after 12 h on instances of set S2 .

Instance z∗ VFF2 VFF3 CFF2 CFF3
Gap t Nodes Gap t Nodes Gap t Nodes Gap t Nodes

ppw-20x5-0a 54793 0.00 5.04 704 0.00 12.61 107 0.00 21.70 1009 0.00 25.59 197
ppw-20x5-0b 39104 0.00 0.03 0 0.00 0.16 0 0.00 0.11 8 0.00 0.50 6
ppw-20x5-2a 48908 0.00 1.31 137 0.00 5.93 113 0.00 4.65 191 0.00 7.44 77
ppw-20x5-2b 37542 0.00 0.02 0 0.00 0.12 0 0.00 0.08 9 0.00 0.49 3
ppw-50x5-0a 90111 1.37 43595.50 33712 2.05 43176.50 4476 1.97 43167.70 18081 2.33 43180.30 4192
ppw-50x5-0b 63242 0.98 43595.50 58868 0.00 1865.40 2605 1.57 43167.20 20673 0.00 13194.70 4362
ppw-50x5-2a 88298 0.75 43418.50 47481 0.80 43172.10 7203 0.97 43167.60 31819 0.91 43170.40 8336
ppw-50x5-2b 67308 0.84 43574.60 61257 0.00* 42721.30 14967 1.19 43167.60 27182 0.30 43175.20 4949
ppw-50x5-2a’ 84 055 0.14 43350.80 95114 0.33 43177.50 11615 0.31 43167.20 50204 0.35 43175.00 10497
ppw-50x5-2b’ 51 822 0.00 10.64 134 0.00 136.19 155 0.00 41.93 289 0.00 125.11 91
ppw-50x5-3a 86203 0.94 43479.80 18603 1.71 43199.40 2784 1.26 43167.90 10656 1.86 43177.50 2496
ppw-50x5-3b 61830 0.00 71.76 596 0.00 647.18 247 0.00 378.75 1000 0.00 1384.13 348

ppw-100x5-0a 274814 2.19 43556.70 6805 2.39 43510.20 260 2.28 43171.20 2850 2.58 43421.20 651
ppw-100x5-0b 214392 1.99 44111.80 4588 3.07 44111.10 3 2.18 43168.90 3699 3.21 43200.00 0
ppw-100x5-2a 193671 1.43 44427.70 4532 1.78 43425.80 277 1.48 43170.50 4004 2.02 43276.10 342
ppw-100x5-2b 157173 0.63 43711.50 9989 0.69 43224.60 1365 0.74 43165.80 3986 0.72 43206.70 544
ppw-100x5-3a 200079 1.32 43846.10 6623 1.49 43356.30 933 1.46 43167.30 8919 1.46 43259.60 4015
ppw-100x5-3b 152441 0.40 43541.60 7460 0.18 43205.30 2766 0.29 43165.90 3141 0.76 43225.00 19
ppw-100x10-0a 289018 3.36 43811.60 2120 4.25 43436.60 863 3.32 43171.80 692 4.36 43477.00 4820
ppw-100x10-0b 234641 2.27 43671.20 7250 3.51 43439.10 37 2.41 43168.70 1291 3.39 43836.90 506
ppw-100x10-2a 243590 1.29 43969.70 6861 1.85 43437.00 8 1.31 43170.60 2354 1.98 43475.00 4218
ppw-100x10-2b 203988 0.00 4734.83 8710 0.65 44250.50 2598 0.01 43176.70 13392 0.62 43436.80 3613
ppw-100x10-3a 252421 3.59 44012.80 1924 4.62 43456.40 2021 2.38 43171.00 684 4.83 43413.40 5648
ppw-100x10-3b 204597 1.94 43661.60 6506 1.39 44132.90 9 2.10 43168.30 928 2.90 43357.90 1155

Average 1.06 31173.36 16249 1.28 30879.17 2309 1.14 32395.38 8628 1.44 31300.08 2545
Instances solved 7 8 6 7

Average on small instances 0.42 21758.62 26384 0.41 18176.20 3689 0.61 21621.03 13427 0.48 19218.03 2963
Small instances solved 6 8 6 7

Average on large instances 1.70 40588.09 6114 2.16 43582.15 928 1.66 43169.72 3828 2.40 43382.13 2128
Large instances solved 1 0 0 0
* Optimality proven for the first time.

Table 18
Gaps and CPU times after 12 h on instances of set S3 .

Instance z∗ VFF2 VFF3 CFF2 CFF3
Gap t Nodes Gap t Nodes Gap t Nodes Gap t Nodes

cr30x5a-1 819.52 0.00 3.23 67 0.00 27.25 11 0.00 7.65 88 0.00 35.05 46
cr30x5a-2 821.50 0.00 8.77 663 0.00 44.5 253 0.00 59.83 1244 0.00 38.20 234
cr30x5a-3 702.30 0.00 0.91 0 0.00 3.5 0 0.00 1.77 38 0.00 7.82 27
cr30x5b-1 880.02 0.00 9.05 395 0.00 86.25 235 0.00 34.66 439 0.00 90.66 184
cr30x5b-2 825.32 0.00 2.55 8 0.00 14.78 9 0.00 7.26 113 0.00 14.57 43
cr30x5b-3 884.60 0.00 3.25 40 0.00 21.85 11 0.00 11.06 137 0.00 28.52 92
cr40x5a-1 928.10 0.00 140.31 1308 0.00 1391.66 783 0.00 608.40 1342 0.00 8619.65 2143
cr40x5a-2 888.42 0.00 86.31 1655 0.00 591.68 601 0.00 203.61 935 0.00 1059.93 692
cr40x5a-3 947.30 0.00 76.63 1019 0.00 785.9 463 0.00 409.66 1286 0.00 1494.26 542
cr40x5b-1 1052.04 0.00 3115.92 21471 0.00 27430.7 12839 0.00 15757.00 24688 0.00 38343.40 14040
cr40x5b-2 981.54 0.00 7.61 25 0.00 104.38 45 0.00 46.77 1011 0.00 91.69 85
cr40x5b-3 964.33 0.00 12.33 20 0.00 50.08 31 0.00 24.30 74 0.00 54.01 49

Average 0.00 288.91 22223 0.00 2546.04 1273 0.00 1431.00 2616.25 0.00 4156.48 1515
Instances solved 12 12 12 12

In Tables 16–19 we report the results obtained by our algorithms after a maximum of 12 h. The column labels are the
same as for the previous sets of tables.

In Tables 20–22 we compare our results with the method of Belenguer et al. [3]. The overall gaps and CPU times reported
in the last rows are computed on the instances that could not be solved by anymethod and on those that were solved by all,
respectively.

Finally, in Tables 23–26we compare our algorithms against the exactmethod of Baldacci et al. [5]. The legend in the tables
is the same used for the previous tables for the comparison with the method of Belenguer et al. [3]. The results reported by
Baldacci et al. [5] are under the columns labeled BMW.

292 C. Contardo et al. / Discrete Optimization 10 (2013) 263–295

Table 19
Gaps and CPU times after 12 h on instances of set S4 .

Instance z∗ VFF2 VFF3 CFF2 CFF3
Gap t Nodes Gap t Nodes Gap t Nodes Gap t Nodes

P111112 14676.9 2.30 44319.80 3604 4.16 43338.20 37 2.49 43177.00 1535 4.65 43290.90 34
P111212 13948 2.20 44120.90 4199 5.08 43293.90 44 2.56 43167.00 1199 4.56 43392.10 66
P112112 11671.6 0.20 43745.40 13454 1.34 43449.90 23 0.29 43168.60 3934 0.81 43532.30 121
P112212 7916.6 0.00 4980.13 8747 0.23 43269.20 1035 0.05 43169.10 16394 0.33 43339.20 363
P113112 12454.5 3.45 43574.00 8057 4.14 43415.10 19 3.69 43167.00 3276 3.38 43576.00 135
P113212 9022.6 0.00 247.09 33 0.00 8247.08 45 0.00 1634.29 139 0.00 13705.40 206

Average 1.36 30164.55 6349 2.49 37502.23 2001 1.51 36247.17 4413 2.29 38472.65 154
Instances solved 2 1 1 1

Table 20
Comparison against method BBPPW on instances of set S1 .

Instance z∗ BBPPW VFF2 VFF3 CFF2 CFF3
Gap t Gap t Gap t Gap t Gap t

Gas67-21x5 424.90 0.00 0.63 0.00 0.59 0.00 4.29 0.00 1.91 0.00 4.76
Gas67-22x5 585.11 0.00 0.17 0.00 0.07 0.00 0.45 0.00 0.19 0.00 1.41
Min92-27x5 3062.02 0.00 0.67 0.00 0.73 0.00 3.94 0.00 1.78 0.00 7.87
Gas67-29x5 512.10 0.00 1.03 0.00 1.01 0.00 7.28 0.00 3.84 0.00 18.06
Gas67-32x5 562.22 0.00 3.45 0.00 1.76 0.00 19.90 0.00 4.98 0.00 27.58
Gas67-32x5-2 504.33 0.00 0.50 0.00 1.01 0.00 4.72 0.00 2.32 0.00 3.96
Gas67-36x5 460.37 0.00 2.05 0.00 2.80 0.00 15.50 0.00 12.07 0.00 43.64
Chr69-50x5p 565.60 0.00 181.06 0.00 68.79 0.00 1093.98 0.00 200.49 0.00 4999.94
Chr69-75x10p 848.85 4.48 3017.83 3.26 7367.52 6.10 7339.88 3.64 7193.51 5.76 7472.10
Das95-88x8 355.78 1.20 3279.17 0.00 411.15 0.73 7267.20 0.00 1308.87 0.32 7275.53

of solved instances 8 9 8 9 8
Avg gap on unsolved instances 4.48 3.26 6.10 3.64 5.76
Avg t on solved instances 23.70 9.60 143.76 28.45 638.40

Table 21
Comparison against method BBPPW on instances of set S2 .

Instance z∗ BBPPW VFF2 VFF3 CFF2 CFF3
Gap t Gap t Gap t Gap t Gap t

ppw-20x5-0a 54793 0.00 2.41 0.00 5.04 0.00 12.61 0.00 21.70 0.00 25.59
ppw-20x5-0b 39104 0.00 0.13 0.00 0.03 0.00 0.16 0.00 0.11 0.00 0.50
ppw-20x5-2a 48908 0.00 2.81 0.00 1.31 0.00 5.93 0.00 4.65 0.00 7.44
ppw-20x5-2b 37542 0.00 0.06 0.00 0.02 0.00 0.12 0.00 0.08 0.00 0.49
ppw-50x5-0a 90111 2.26 7212.25 1.77 7336.51 2.46 7207.13 2.39 7193.53 2.78 7210.67
ppw-50x5-0b 63242 1.37 5557.95 1.23 7304.54 0.00 1865.40 1.77 7193.39 0.38 7199.65
ppw-50x5-2a 88298 1.11 7208.06 1.00 7265.57 1.05 7198.80 1.21 7193.73 1.24 7197.10
ppw-50x5-2b 67340 1.43 6013.58 1.17 7282.73 0.68 7199.72 1.50 7193.41 0.87 7201.81
ppw-50x5-2a’ 84 055 0.47 7207.05 0.28 7244.32 0.48 7203.79 0.49 7193.36 0.55 7203.78
ppw-50x5-2b’ 51 822 0.00 9.16 0.00 10.64 0.00 136.19 0.00 41.93 0.00 125.11
ppw-50x5-3a 86203 1.80 7206.95 1.16 7283.89 2.09 7199.29 1.46 7194.24 2.20 7210.56
ppw-50x5-3b 61830 0.00 96.86 0.00 71.76 0.00 647.18 0.00 378.75 0.00 1368.30

of solved instances 6 6 7 6 6
Avg gap on unsolved instances 1.41 1.08 1.35 1.41 1.53
Avg t on solved instances 18.57 14.80 133.70 74.54 254.57

Table 22
Comparison against method BBPPW on instances of set S3 .

Instance z∗ BBPPW VFF2 VFF3 CFF2 CFF3
Gap t Gap t Gap t Gap t Gap t

cr30x5a-1 819.5 0.00 50.22 0.00 3.23 0.00 27.25 0.00 7.65 0.00 35.05
cr30x5a-2 821.5 0.00 53.89 0.00 8.77 0.00 44.50 0.01 59.83 0.00 38.20
cr30x5a-3 702.3 0.00 0.73 0.00 0.91 0.00 3.50 0.00 1.77 0.00 7.82
cr30x5b-1 880.0 0.00 8.48 0.00 9.05 0.00 86.25 0.00 34.66 0.00 90.66
cr30x5b-2 825.3 0.00 1.09 0.00 2.55 0.00 14.78 0.00 7.26 0.00 14.57
cr30x5b-3 884.6 0.00 5.63 0.00 3.25 0.00 21.85 0.00 11.06 0.00 28.52

(continued on next page)

C. Contardo et al. / Discrete Optimization 10 (2013) 263–295 293

Table 22 (continued)

Instance z∗ BBPPW VFF2 VFF3 CFF2 CFF3
Gap t Gap t Gap t Gap t Gap t

cr40x5a-1 928.1 0.00 305.25 0.00 140.31 0.00 1391.66 0.00 608.40 0.14 7328.59
cr40x5a-2 888.4 0.00 98.34 0.00 86.31 0.00 591.68 0.00 203.61 0.00 1059.93
cr40x5a-3 947.3 0.00 158.27 0.00 76.63 0.00 785.90 0.00 409.66 0.00 1494.26
cr40x5b-1 1052.0 0.00 3694.45 0.00 3115.92 0.86 7197.27 0.57 7193.77 1.03 7196.37
cr40x5b-2 981.5 0.00 10.25 0.00 7.61 0.00 104.38 0.00 46.77 0.00 91.69
cr40x5b-3 964.3 0.00 11.36 0.00 12.33 0.00 50.08 0.00 24.30 0.00 54.01

of solved instances 12 12 11 11 10
Avg t on solved instances 63.96 31.90 283.80 128.63 931.21

Table 23
Comparison against method BMW on instances of set S1 .

Instance z∗ BMW VFF2 VFF3 CFF2 CFF3
Gap t Gap t Gap t Gap t Gap t

Perl83-12x2 204.0 0.0 0.5 0.0 0.0 0.0 0.1 0.0 0.1 0.0 0.1
Gas67-21x5 424.9 0.0 3.9 0.0 0.6 0.0 4.3 0.0 1.9 0.0 4.8
Gas67-22x5 585.1 0.0 6.0 0.0 0.1 0.0 0.5 0.0 0.2 0.0 1.4
Min92-27x5 3062.0 0.0 47.0 0.0 0.7 0.0 3.9 0.0 1.8 0.0 7.9
Gas67-29x5 512.1 0.0 178.2 0.0 1.0 0.0 7.3 0.0 3.8 0.0 18.1
Gas67-32x5 562.2 0.0 63.4 0.0 1.8 0.0 19.9 0.0 5.0 0.0 27.6
Gas67-32x5-2 504.3 0.0 117.9 0.0 1.0 0.0 4.7 0.0 2.3 0.0 4.0
Gas67-36x5 460.4 0.0 2.9 0.0 2.8 0.0 15.5 0.0 12.1 0.0 43.6
Chr69-50x5b 565.6 0.0 93.9 0.0 44.8 0.0 530.8 0.0 212.9 0.0 1655.6
Chr69-50x5p 565.6 0.0 112.9 0.0 68.8 0.0 1094.0 0.0 200.5 0.0 4999.9
Perl83-55x15 1112.1 0.0 291.2 0.5 44278.6 1.1 43228.2 0.6 43163.3 0.8 43188.2
Chr69-75x10p 848.8 0.0 3413.5 2.7 43902.3 5.6 43353.7 3.0 43161.2 4.4 43355.4
Chr69-75x10bmw 802.1 0.0 2826.9 2.9 44528.4 4.4 43315.0 3.2 43166.1 4.1 43409.6
Perl83-85x7 1622.5 0.0 488.1 0.5 44470.7 0.8 43224.3 0.6 43164.3 0.9 43215.6
Chr69-100x10 833.4 0.0 13074.7 0.3 43933.9 1.5 43396.8 0.5 43168.3 1.7 43376.4

of solved instances 15 10 10 10 10
Avg t on solved instances 62.66 12.156 168.088 44.06 676.288

Table 24
Comparison against method BMW on instances of set S2 .

Instance z∗ BMW VFF2 VFF3 CFF2 CFF3
Gap t Gap t Gap t Gap t Gap t

ppw-20x5-0a 54793 0.0 10.2 0.0 5.0 0.0 12.6 0.0 21.7 0.0 25.6
ppw-20x5-0b 39104 0.0 17.9 0.0 0.0 0.0 0.2 0.0 0.1 0.0 0.5
ppw-20x5-2a 48908 0.0 3.8 0.0 1.3 0.0 5.9 0.0 4.7 0.0 7.4
ppw-20x5-2b 37542 0.0 44.8 0.0 0.0 0.0 0.1 0.0 0.1 0.0 0.5
ppw-50x5-0a 90111 0.0 52.9 1.4 43595.5 2.1 43176.5 2.0 43167.7 2.3 43180.3
ppw-50x5-0b 63242 0.0 8928.9 1.0 43595.5 0.0 1865.4 1.6 43167.2 0.0 13194.7
ppw-50x5-2a 88298 0.0 71.6 0.7 43418.5 0.8 43172.1 1.0 43167.6 0.9 43170.4
ppw-50x5-2b 67340 2.7 9531.8 0.8 43574.6 0.0 42721.3 1.2 43167.6 0.3 43175.2
ppw-50x5-2a’ 84055 0.0 58.5 0.1 43350.8 0.3 43177.5 0.3 43167.2 0.3 43175.0
ppw-50x5-2b’ 51822 0.0 192.0 0.0 10.6 0.0 136.2 0.0 41.9 0.0 125.1
ppw-50x5-3a 86203 0.0 61.5 0.9 43479.8 1.7 43199.4 1.3 43167.9 1.9 43177.5
ppw-50x5-3b 61830 0.0 131.2 0.0 71.8 0.0 647.2 0.0 378.8 0.0 1384.1
ppw-100x5-0a 274814 0.0 402.6 2.2 43556.7 2.4 43510.2 2.3 43171.2 2.6 43421.2
ppw-100x5-0b 214392 0.8 9734.2 2.0 44111.8 3.1 44111.1 2.2 43168.9 3.2 43200.0
ppw-100x5-2a 193671 0.0 116.5 1.4 44427.7 1.8 43425.8 1.5 43170.5 2.0 43276.1
ppw-100x5-2b 157173 0.4 15458.9 0.6 43711.5 0.7 43224.6 0.7 43165.8 0.7 43206.7
ppw-100x5-3a 200079 0.0 273.4 1.3 43846.1 1.5 43356.3 1.5 43167.3 1.5 43259.6
ppw-100x5-3b 152441 0.0 1019.5 0.4 43541.6 0.2 43205.3 0.3 43165.9 0.8 43225.0
ppw-100x10-0a 289018 1.9 23462.5 3.4 43811.6 4.3 43436.6 3.3 43171.8 4.4 43477.0
ppw-100x10-0b 234641 2.2 20142.2 2.3 43671.2 3.5 43439.1 2.4 43168.7 3.4 43836.9
ppw-100x10-2a 243590 0.0 7836.8 1.3 43969.7 1.8 43437.0 1.3 43170.6 2.0 43475.0
ppw-100x10-2b 203988 0.0 1755.9 0.0 4734.8 0.6 44250.5 0.0 43176.7 0.6 43436.8
ppw-100x10-3a 252421 2.1 14796.2 3.6 44012.8 4.6 43456.4 2.4 43171.0 4.8 43413.4
ppw-100x10-3b 204597 1.6 20323.3 1.9 43661.6 1.4 44132.9 2.1 43168.3 2.9 43357.9

of solved instances 17 7 8 6 7
Avg gap on unsolved instances 1.5 2.3 2.9 2.2 3.2
Avg t on solved instances 66.7 14.8 133.7 74.5 257.2

294 C. Contardo et al. / Discrete Optimization 10 (2013) 263–295

Table 25
Comparison against method BMW on instances of set S3 .

Instance z∗ BMW VFF2 VFF3 CFF2 CFF3
Gap t Gap t Gap t Gap t Gap t

cr30x5a-1 819.5 0.0 75.4 0.0 3.2 0.0 27.3 0.0 7.7 0.0 35.1
cr30x5a-2 821.5 0.0 121.9 0.0 8.8 0.0 44.5 0.0 59.8 0.0 38.2
cr30x5a-3 702.3 0.0 66.3 0.0 0.9 0.0 3.5 0.0 1.8 0.0 7.8
cr30x5b-1 880.0 0.0 96.9 0.0 9.1 0.0 86.3 0.0 34.7 0.0 90.7
cr30x5b-2 825.3 0.0 57.1 0.0 2.6 0.0 14.8 0.0 7.3 0.0 14.6
cr30x5b-3 884.6 0.0 39.2 0.0 3.3 0.0 21.9 0.0 11.1 0.0 28.5
cr40x5a-1 928.1 0.0 269.1 0.0 140.3 0.0 1391.7 0.0 608.4 0.0 8619.7
cr40x5a-2 888.4 0.0 260.7 0.0 86.3 0.0 591.7 0.0 203.6 0.0 1059.9
cr40x5a-3 947.3 0.0 244.1 0.0 76.6 0.0 785.9 0.0 409.7 0.0 1494.3
cr40x5b-1 1052.0 0.0 230.3 0.0 3115.9 0.0 27430.7 0.0 15757.0 0.0 38343.4
cr40x5b-2 981.5 0.0 296.8 0.0 7.6 0.0 104.4 0.0 46.8 0.0 91.7
cr40x5b-3 964.3 0.0 231.2 0.0 12.3 0.0 50.1 0.0 24.3 0.0 54.0

of solved instances 12 12 12 12 12
Avg t on solved instances 165.75 288.91 2546.04 1431.00 4156.48

Table 26
Comparison against method BMW on instances of set S4 .

Instance z∗ BMW VFF2 VFF3 CFF2 CFF3
Gap t Gap t Gap t Gap t Gap t

P111112 14676.9 0.0 4569.0 2.3 44319.8 4.2 43338.2 2.5 43177.0 4.7 43290.9
P111212 13948.0 0.0 7110.5 2.2 44120.9 5.1 43293.9 2.6 43167.0 4.6 43392.1
P112112 11671.6 0.0 4021.9 0.2 43745.4 1.3 43449.9 0.3 43168.6 0.8 43532.3
P112212 7916.6 0.0 5935.0 0.0 4980.1 0.2 43269.2 0.1 43169.1 0.3 43339.2
P113112 12454.5 1.6 57911.3 3.5 43574.0 4.1 43415.1 3.7 43167.0 3.4 43576.0
P113212 9022.6 0.0 7264.6 0.0 247.1 0.0 8247.1 0.0 1634.3 0.0 13705.4

of solved instances 5 2 1 1 1
Avg gap on unsolved
instances

1.6 3.5 4.1 3.7 3.4

Avg t on solved instances 7264.6 247.1 8247.1 1634.3 13705.4

References

[1] J. Perl, M.S. Daskin, A warehouse location-routing problem, Transportation Research B 19 (1985) 381–396.
[2] G. Laporte, Y. Nobert, D. Arpin, An exact algorithm for solving a capacitated location-routing problem, Annals of Operations Research 6 (1986) 293–310.
[3] J.M. Belenguer, E. Benavent, C. Prins, C. Prodhon, R.Wolfler-Calvo, A branch-and-cut algorithm for the capacitated location routing problem, Computers

& Operations Research 38 (2011) 931–941.
[4] Z. Akca, R.T. Berger, T.K. Ralphs,Modeling and solving location, routing, and scheduling problems, in: Proceedings of the Eleventh INFORMSComputing

Society Meeting, Charleston, South Carolina, USA, 2009, pp. 309–330.
[5] R. Baldacci, A. Mingozzi, R. Wolfler-Calvo, An exact method for the capacitated location-routing problem, Operations Research 59 (2011) 1284–1296.
[6] P.H. Hansen, B. Hegedahl, S. Hjortkjaer, B. Obel, A heuristic solution to the warehouse location-routing problem, European Journal of Operational

Research 76 (1994) 111–127.
[7] T.-H. Wu, C. Low, J.-W. Bai, Heuristic solutions to multi-depot location-routing problems, Computers & Operations Research 29 (2002) 1393–1415.
[8] C.K.Y. Lin, C.K. Chow, A. Chen, A location-routing-loading problem for bill delivery services, Computers & Operations Research 43 (2002) 5–25.
[9] S.C. Liu, C.C. Lin, A heuristic method for the combined location routing and inventory problem, International Journal of Advanced Manufacturing

Technologies 26 (2005) 372–381.
[10] D. Tuzun, L.I. Burke, A two-phase tabu search approach to the location routing problem, European Journal of Operational Research 116 (1999) 87–99.
[11] C. Prins, C. Prodhon, R. Wolfler-Calvo, A memetic algorithm with population management (MA|PM) for the capacitated location-routing problem,

in: J. Gottlieb, G.R. Raidl (Eds.), EvoCOP 2006, Lecture Notes in Computer Science, vol. 3906, Springer-Verlag, Berlin, Heidelberg, 2006, pp. 183–194.
[12] Z. Ozyurt, D. Aksen, Solving multi-depot location-routing problem with time windows using Lagrangian relaxation, in: ODYSSEUS 2006, Third

International Workshop on Freight Transportation and Logistics, Altea, Spain, 2006.
[13] F. Margot, Symmetry in integer linear programming, in: M. Jünger, T.M. Liebling, D. Naddef, G.L. Nemhauser, W.R. Pulleyblank, G. Reinelt, G. Rinaldi,

L.A. Wolsey (Eds.), 50 Years of Integer Programming 1958–2008, 2010, pp. 647–686.
[14] R. Baldacci, E. Hadjiconstantinou, A. Mingozzi, An exact algorithm for the capacitated vehicle routing problem based on a two-commodity network

flow formulation, Operations Research 52 (2004) 723–738.
[15] M.L. Fisher, Optimal solution of vehicle routing problems using minimum k-trees, Operations Research 42 (1994) 626–642.
[16] L. Gouveia, A result on projection for the vehicle routing problem, European Journal of Operational Research 85 (1995) 610–624.
[17] J. Lysgaard, A.N. Letchford, R.W. Eglese, A new branch-and-cut algorithm for the capacitated vehicle routing problem, Mathematical Programming

100 (2004) 423–445.
[18] V. Chvátal, Edmonds polytopes and weakly Hamiltonian graphs, Mathematical Programming 5 (1973) 29–40.
[19] M. Grötschel, M.W. Padberg, On the symmetric travelling salesman problem I: inequalities, Mathematical Programming 16 (1979) 265–280.
[20] G. Laporte, Y. Nobert, Comb inequalities for the vehicle routing problem, Methods of Operations Research 51 (1984) 271–276.
[21] D.L. Applegate, R.E. Bixby, V. Chvátal, W.J. Cook, The Traveling Salesman Problem: A Computational Study, Princeton University Press, Princeton, 2007.
[22] S. Martello, D. Pisinger, P. Toth, Dynamic programming and strong bounds for the 0–1 knapsack problem, Management Science 45 (1999) 414–424.
[23] S.T. McCormick, M.R. Rao, G. Rinaldi, Easy and difficult objective functions for max cut, Mathematical Programming Series B 94 (2003) 459–466.
[24] R.E. Gomory, T.C. Hu, Multi-terminal network flows, Journal of the SIAM 9 (1961) 551–570.
[25] U. Blasum, W. Hochstättler, Application of the Branch and Cut Method to the Vehicle Routing Problem, Technical Report, Zentrum für Angewandte

Informatik Köln, Germany, 2002.

http://refhub.elsevier.com/S1572-5286(13)00033-9/sbref1
http://refhub.elsevier.com/S1572-5286(13)00033-9/sbref2
http://refhub.elsevier.com/S1572-5286(13)00033-9/sbref3
http://refhub.elsevier.com/S1572-5286(13)00033-9/sbref4
http://refhub.elsevier.com/S1572-5286(13)00033-9/sbref5
http://refhub.elsevier.com/S1572-5286(13)00033-9/sbref6
http://refhub.elsevier.com/S1572-5286(13)00033-9/sbref7
http://refhub.elsevier.com/S1572-5286(13)00033-9/sbref8
http://refhub.elsevier.com/S1572-5286(13)00033-9/sbref9
http://refhub.elsevier.com/S1572-5286(13)00033-9/sbref10
http://refhub.elsevier.com/S1572-5286(13)00033-9/sbref11
http://refhub.elsevier.com/S1572-5286(13)00033-9/sbref12
http://refhub.elsevier.com/S1572-5286(13)00033-9/sbref13
http://refhub.elsevier.com/S1572-5286(13)00033-9/sbref14
http://refhub.elsevier.com/S1572-5286(13)00033-9/sbref15
http://refhub.elsevier.com/S1572-5286(13)00033-9/sbref16
http://refhub.elsevier.com/S1572-5286(13)00033-9/sbref17
http://refhub.elsevier.com/S1572-5286(13)00033-9/sbref18
http://refhub.elsevier.com/S1572-5286(13)00033-9/sbref19
http://refhub.elsevier.com/S1572-5286(13)00033-9/sbref20
http://refhub.elsevier.com/S1572-5286(13)00033-9/sbref21
http://refhub.elsevier.com/S1572-5286(13)00033-9/sbref22
http://refhub.elsevier.com/S1572-5286(13)00033-9/sbref23
http://refhub.elsevier.com/S1572-5286(13)00033-9/sbref24
http://refhub.elsevier.com/S1572-5286(13)00033-9/sbref25

C. Contardo et al. / Discrete Optimization 10 (2013) 263–295 295

[26] Z. Gu, G.L. Nemhauser,M.W.P. Savelsbergh, Lifted cover inequalities for 0–1 integer programs: computation, INFORMS Journal on Computing 10 (1998)
427–437.

[27] S. Barreto, Análise e Modelização de Problemas de localização-distribuição, in: Ph.D. Thesis, University of Aveiro, Campus Universitário de Santiago,
3810-193 Aveiro, Portugal, 2004 (in Portuguese).

[28] R. Fukasawa, H. Longo, J. Lysgaard, M.P. de Aragão, M. Reis, E. Uchoa, R.F. Werneck, Robust branch-and-cut-and-price for the capacitated vehicle
routing problem, Mathematical Programming Series A 106 (2006) 491–511.

[29] R. Baldacci, N. Christofides, A. Mingozzi, An exact algorithm for the vehicle routing problem based on the set partitioning formulation with additional
cuts, Mathematical Programming 115 (2008) 351–385.

[30] S. Ropke, J.-F. Cordeau, Branch and cut and price for the pickup and delivery problemwith time windows, Transportation Science 43 (2009) 267–286.
[31] R. Baldacci, E. Bartolini, A. Mingozzi, An exact algorithm for the pickup and delivery problem with time windows, Operations Research 59 (2011)

414–426.
[32] E. Bartolini, J.-F. Cordeau, G. Laporte, Improved lower bounds and exact algorithm for the capacitated arc routing problem,Mathematical Programming

Series A 137 (2013) 409–452.

http://refhub.elsevier.com/S1572-5286(13)00033-9/sbref26
http://refhub.elsevier.com/S1572-5286(13)00033-9/sbref28
http://refhub.elsevier.com/S1572-5286(13)00033-9/sbref29
http://refhub.elsevier.com/S1572-5286(13)00033-9/sbref30
http://refhub.elsevier.com/S1572-5286(13)00033-9/sbref31
http://refhub.elsevier.com/S1572-5286(13)00033-9/sbref32

	A computational comparison of flow formulations for the capacitated location-routing problem
	Introduction
	Mathematical formulations
	A two-index vehicle-flow formulation
	A three-index vehicle-flow formulation
	A two-index two-commodity flow formulation
	A three-index two-commodity flow formulation
	An illustrative example

	Valid inequalities
	Known valid inequalities
	Inequalities for the CVRP
	 y -capacity cuts
	Strengthened facility capacity inequalities
	Co-circuit constraints
	Facility degree constraints

	New valid inequalities
	Flow-assignment inequalities
	Disaggregated co-circuit constraints
	Disaggregated facility degree constraints
	Strengthened facility capacity inequalities
	Effective strengthened facility capacity inequalities
	Location-routing comb inequalities
	Location-routing generalized large multistar inequalities

	Separation algorithms
	A cut lifting heuristic
	CVRP inequalities
	 y -capacity constraints
	Strengthened facility capacity inequalities
	Shrinking heuristic
	Connected component heuristic
	Exact separation of fractional BFCI's

	Effective strengthened facility capacity inequalities
	Co-circuit constraints
	Facility degree constraints
	Path constraints
	Greedy search heuristic
	Exact separation

	Location-routing comb inequalities
	 y -generalized large multistar inequalities
	 y -location-routing generalized large multistar inequalities
	Location-routing generalized large multistar inequalities

	The exact algorithms
	The separation strategies
	The branching strategy

	Computational experiments
	Concluding remarks
	Acknowledgments
	Proofs of lemmas and propositions
	Shrinking routines
	A shrinking routine for the separation of constraints BFCI
	A shrinking routine for the separation of path constraints

	Detailed results
	References

